First lunar lander RL model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sendit.zip +3 -0
- sendit/_stable_baselines3_version +1 -0
- sendit/data +94 -0
- sendit/policy.optimizer.pth +3 -0
- sendit/policy.pth +3 -0
- sendit/pytorch_variables.pth +3 -0
- sendit/system_info.txt +7 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 174.31 +/- 19.84
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f195f662440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f195f6624d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f195f662560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f195f6625f0>", "_build": "<function ActorCriticPolicy._build at 0x7f195f662680>", "forward": "<function ActorCriticPolicy.forward at 0x7f195f662710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f195f6627a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f195f662830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f195f6628c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f195f662950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f195f6629e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f195f69ce40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652038862.4551256, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFZGvr5sus8+M7N3veQGVb7EmEI+6vCWvQAAAAAAAAAAs0KcveHQj7oQpJa7VSxVNdzoObuosq46AACAPwAAgD/tpyE+CpdpOuIAgrwWXH+5XWF1PB0BZroAAIA/AACAP2Z2n7sLJjE/AvsivaI9g74XSoA91hSXPQAAAAAAAAAAOkVKvgrlTLurkPo5VemXNt4XlDzapA65AACAPwAAgD9Ab7o9pNBbuU+ikLmLFMC0/aIxO2jQqjgAAIA/AACAP+bjbL07WKY/cNn1vc+yyL7DtpW9dxwEvQAAAAAAAAAADRD3vSnwbrrtdlK6k5GMNZvKkzeTIHU5AACAPwAAgD9Ntdc9gxQHvN3xC71EMyS+rHdFvT7pir0AAIA/AACAP2aMLzy4js+5r0+oOlx8aTa95Ww7orPFuQAAgD8AAIA/1v5wvos3Mj89n1c8Hfo7vpv+gDrmXYK9AAAAAAAAAABAJxm+H9mHu2VP3DuFR5M56OvDPFAzc7oAAIA/AACAP5p95zwc5ro+ioG8vdsd8L0GjFK9An8OvQAAAAAAAAAAJnYkvh9pyrtdQ4c7Uw8pOVGoOD1ymKi6AACAPwAAgD961jQ+wJuZPuZiFL4rWVW+GgOnvFhzTjwAAAAAAAAAAMCl3D1SaIe5LQc1uRY/ubTgVgk8jdtWOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0CUceougV0CUhpRSlIwBbJRN6AOMAXSUR0CC0hqs2eg+dX2UKGgGaAloD0MIZwqd19jTRkCUhpRSlGgVTegDaBZHQILTYhllK9R1fZQoaAZoCWgPQwh8fhghPLxTQJSGlFKUaBVN6ANoFkdAgtSWkrPMS3V9lChoBmgJaA9DCHwNwXGZOmNAlIaUUpRoFU3oA2gWR0CC3BMQEpy7dX2UKGgGaAloD0MIGVbxRuaRCECUhpRSlGgVTT4BaBZHQILw6HARChN1fZQoaAZoCWgPQwgCt+7mqa5WQJSGlFKUaBVN6ANoFkdAgvS6X8fmtHV9lChoBmgJaA9DCJ3ZrtAHczPAlIaUUpRoFU2AAWgWR0CC9g6fapPzdX2UKGgGaAloD0MIX+6To4B6ZUCUhpRSlGgVTegDaBZHQIL2Zk078vV1fZQoaAZoCWgPQwgQBwlRvsAowJSGlFKUaBVNRQFoFkdAgvaJn6Eal3V9lChoBmgJaA9DCC5x5IHICj9AlIaUUpRoFU1uAWgWR0CC9tbTMJQddX2UKGgGaAloD0MIyt+9o8a/VUCUhpRSlGgVTegDaBZHQIMkovtdAxB1fZQoaAZoCWgPQwio4zEDlRE0wJSGlFKUaBVL1mgWR0CDMczbeuV5dX2UKGgGaAloD0MIEW+df7vsNcCUhpRSlGgVTUwBaBZHQIM7ieRPoFF1fZQoaAZoCWgPQwhkeVc9YIpYQJSGlFKUaBVN6ANoFkdAgzyLpA2Q4nV9lChoBmgJaA9DCFG/C1uzTSNAlIaUUpRoFU1nAWgWR0CDQi8hcJMQdX2UKGgGaAloD0MIYAX4bvO9XkCUhpRSlGgVTegDaBZHQINEj4BV+7V1fZQoaAZoCWgPQwiFRNrGn/5ZQJSGlFKUaBVN6ANoFkdAg1B5JK8L8nV9lChoBmgJaA9DCCnqzD0kwllAlIaUUpRoFU3oA2gWR0CDUVlFtsN2dX2UKGgGaAloD0MI6ZjzjH2hUECUhpRSlGgVTegDaBZHQINYuk30f5l1fZQoaAZoCWgPQwhF9dbAVik7wJSGlFKUaBVNMwFoFkdAg2FMlTm4iHV9lChoBmgJaA9DCCtPIOwU415AlIaUUpRoFU3oA2gWR0CDZEWYWtU5dX2UKGgGaAloD0MIgjl6/N5GJ0CUhpRSlGgVTSABaBZHQINowJqqOtJ1fZQoaAZoCWgPQwgTLXk8LQheQJSGlFKUaBVN6ANoFkdAg2oUGVzIWHV9lChoBmgJaA9DCOFdLuI7z19AlIaUUpRoFU3oA2gWR0CDbVSfDk2hdX2UKGgGaAloD0MInnqkwe2TYECUhpRSlGgVTegDaBZHQIN3WRq46Op1fZQoaAZoCWgPQwiRYoBEE1gawJSGlFKUaBVNPgFoFkdAg4rXCsOoYXV9lChoBmgJaA9DCLg/Fw0Z4VlAlIaUUpRoFU3oA2gWR0CDmDQswtaqdX2UKGgGaAloD0MIu+8YHvv6XECUhpRSlGgVTegDaBZHQIOYat1ZDAt1fZQoaAZoCWgPQwjG/NzQlE0lQJSGlFKUaBVN6ANoFkdAg5jLaufVZ3V9lChoBmgJaA9DCDTbFfpgulhAlIaUUpRoFU3oA2gWR0CDyeTSLIgedX2UKGgGaAloD0MIrtNIS+WnVkCUhpRSlGgVTegDaBZHQIPaQClrM1V1fZQoaAZoCWgPQwjOiT20j4lMQJSGlFKUaBVN6ANoFkdAg+b4xk/bCnV9lChoBmgJaA9DCD19BP7wy2BAlIaUUpRoFU3oA2gWR0CD7gCQtBfKdX2UKGgGaAloD0MIWhE10efzRcCUhpRSlGgVTV8BaBZHQIPvDGgi/wl1fZQoaAZoCWgPQwjyJOmayZ5cQJSGlFKUaBVN6ANoFkdAg/7SimEXcnV9lChoBmgJaA9DCNmTwOYcHlhAlIaUUpRoFU3oA2gWR0CD/8fZmI0qdX2UKGgGaAloD0MIfentz0VUXECUhpRSlGgVTegDaBZHQIQHtMuez2R1fZQoaAZoCWgPQwi8XMR3YnxeQJSGlFKUaBVN6ANoFkdAhBPxsVLzw3V9lChoBmgJaA9DCFPsaBzqImFAlIaUUpRoFU3oA2gWR0CEGNkc0cfedX2UKGgGaAloD0MIpWlQNA+9XECUhpRSlGgVTegDaBZHQIQaOQfZElV1fZQoaAZoCWgPQwjn/X+cMDVHwJSGlFKUaBVNdQFoFkdAhBshE8aGYnV9lChoBmgJaA9DCDATRUjdkGFAlIaUUpRoFU3oA2gWR0CEHZfnfVI7dX2UKGgGaAloD0MIVUs6ysHUU0CUhpRSlGgVTegDaBZHQIQoTQb+98J1fZQoaAZoCWgPQwghrTHohCgjwJSGlFKUaBVNOwFoFkdAhCoAwPAfuHV9lChoBmgJaA9DCMalKm1xBUvAlIaUUpRoFU1oAWgWR0CEOBRDTjNqdX2UKGgGaAloD0MI06OpnkwwYUCUhpRSlGgVTegDaBZHQIQ7jewcHW11fZQoaAZoCWgPQwgfR3NkZZ9hQJSGlFKUaBVN6ANoFkdAhEb6FM7EHnV9lChoBmgJaA9DCAlupGyRh1lAlIaUUpRoFU3oA2gWR0CER4UWVNYbdX2UKGgGaAloD0MIrRbYY6KzYECUhpRSlGgVTegDaBZHQIR4WKGcnVp1fZQoaAZoCWgPQwj52ch1UwVeQJSGlFKUaBVN6ANoFkdAhIkJbt7a7HV9lChoBmgJaA9DCOEp5Eo90VJAlIaUUpRoFU3oA2gWR0CEnb5HmRvFdX2UKGgGaAloD0MIx6F+F7adXECUhpRSlGgVTegDaBZHQISe3XI2fkF1fZQoaAZoCWgPQwhETl/P1yZSQJSGlFKUaBVN6ANoFkdAhLAOE25xznV9lChoBmgJaA9DCHZxGw3gH09AlIaUUpRoFU3oA2gWR0CEyDBMzuWsdX2UKGgGaAloD0MIz8DIyxqOZECUhpRSlGgVTegDaBZHQITNXF3pwCN1fZQoaAZoCWgPQwiyD7IsmNReQJSGlFKUaBVN6ANoFkdAhM7h2GIsRXV9lChoBmgJaA9DCBVUVP1KblVAlIaUUpRoFU3oA2gWR0CEz9V+7UXpdX2UKGgGaAloD0MIvaseMI85ZUCUhpRSlGgVTegDaBZHQITSSFdszl91fZQoaAZoCWgPQwiCVmDI6r9XQJSGlFKUaBVN6ANoFkdAhNyylenhsXV9lChoBmgJaA9DCLDL8J9u2l1AlIaUUpRoFU3oA2gWR0CE3i4Ds+mndX2UKGgGaAloD0MIi4nNx7XNXUCUhpRSlGgVTegDaBZHQITqF/BnBcl1fZQoaAZoCWgPQwiy17s/3kNhQJSGlFKUaBVN6ANoFkdAhOzrilzltHV9lChoBmgJaA9DCM6qz9VWnV5AlIaUUpRoFU3oA2gWR0CE9qTmnwXqdX2UKGgGaAloD0MIhKCjVS1VWUCUhpRSlGgVTegDaBZHQIT3HbTMJQd1fZQoaAZoCWgPQwiDaK1oc2BnQJSGlFKUaBVNswJoFkdAhPuyWRigCnV9lChoBmgJaA9DCC0JUFPLk15AlIaUUpRoFU3oA2gWR0CFJj/VAiV0dX2UKGgGaAloD0MI6znpfWMOYECUhpRSlGgVTegDaBZHQIU1bFl05lx1fZQoaAZoCWgPQwgmrI2xE6VhQJSGlFKUaBVN6ANoFkdAhUfwVTJhfHV9lChoBmgJaA9DCMZq8/+q1zFAlIaUUpRoFU2LAWgWR0CFVVX7Lt/ndX2UKGgGaAloD0MIwktw6gPUXUCUhpRSlGgVTegDaBZHQIVY2ZAprk91fZQoaAZoCWgPQwiD+MCO//o2QJSGlFKUaBVNMwFoFkdAhWBPo3aSLnV9lChoBmgJaA9DCLQAbatZQGBAlIaUUpRoFU3oA2gWR0CFbb8Rcu8LdX2UKGgGaAloD0MICvfKvFWnXUCUhpRSlGgVTegDaBZHQIVyZmZmZmZ1fZQoaAZoCWgPQwh5rYTuko9iQJSGlFKUaBVN6ANoFkdAhXO3Lmp2lnV9lChoBmgJaA9DCNVamIV2uGBAlIaUUpRoFU3oA2gWR0CFdI+kgwGodX2UKGgGaAloD0MImODUB5KGXECUhpRSlGgVTegDaBZHQIV2v7aZhKF1fZQoaAZoCWgPQwi86ZYd4uFUQJSGlFKUaBVN6ANoFkdAhX+g3T/hl3V9lChoBmgJaA9DCFn9EYYBLVlAlIaUUpRoFU3oA2gWR0CFgQJj2BatdX2UKGgGaAloD0MIza57K5KoYkCUhpRSlGgVTegDaBZHQIWMi1eBxxV1fZQoaAZoCWgPQwj5TPbPUxpgQJSGlFKUaBVN6ANoFkdAhY96Ezwc53V9lChoBmgJaA9DCKyt2F92b0bAlIaUUpRoFU1XAWgWR0CFlTmbLEDRdX2UKGgGaAloD0MIs+veisTwYUCUhpRSlGgVTegDaBZHQIWZ8ZiuuA91fZQoaAZoCWgPQwgEqn8QyZtdQJSGlFKUaBVN6ANoFkdAhZplSS/0unV9lChoBmgJaA9DCNfep6pQ8mJAlIaUUpRoFU3oA2gWR0CFpOb9ZRsNdX2UKGgGaAloD0MIUbtfBfgXWkCUhpRSlGgVTegDaBZHQIXs0gB91EF1fZQoaAZoCWgPQwhd4sgDkSVcQJSGlFKUaBVN6ANoFkdAhfvkEcKgI3V9lChoBmgJaA9DCCQPRBZpw1ZAlIaUUpRoFU3oA2gWR0CF/8oUBXCCdX2UKGgGaAloD0MIDtsWZbaiYECUhpRSlGgVTegDaBZHQIYHsmKIi1R1fZQoaAZoCWgPQwiPqiaIunFeQJSGlFKUaBVN6ANoFkdAhhojIzWPLnV9lChoBmgJaA9DCK1OzlBcoWFAlIaUUpRoFU3oA2gWR0CGG475Ec81dX2UKGgGaAloD0MIcctHUlK2YUCUhpRSlGgVTegDaBZHQIYcdaIN3GJ1fZQoaAZoCWgPQwilv5fCg5dcQJSGlFKUaBVN6ANoFkdAhh62h7E5yXV9lChoBmgJaA9DCKRQFr6+A15AlIaUUpRoFU3oA2gWR0CGKEdupCKKdX2UKGgGaAloD0MIIEJcOXtRYkCUhpRSlGgVTegDaBZHQIYpuYYzi0h1fZQoaAZoCWgPQwiHqMKf4d5bQJSGlFKUaBVN6ANoFkdAhjYB8x9G7XV9lChoBmgJaA9DCDmYTYBhbFxAlIaUUpRoFU3oA2gWR0CGOSRODaoNdX2UKGgGaAloD0MIle6us6FTYUCUhpRSlGgVTegDaBZHQIY+7S1E3Kl1fZQoaAZoCWgPQwgNiuYBLLdfQJSGlFKUaBVN6ANoFkdAhkOE8zQ/o3V9lChoBmgJaA9DCPbuj/cqvmFAlIaUUpRoFU3oA2gWR0CGQ/m+0w8GdX2UKGgGaAloD0MIZwqd19iUWECUhpRSlGgVTegDaBZHQIZOYYrJ8v51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb17b53f56b900641ecd483dee976cf16958217a763b58d4f6d710e10c438eef
|
3 |
+
size 249785
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 174.31029362337796, "std_reward": 19.84344226003817, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T20:13:02.742111"}
|
sendit.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e1e120cb12cae9efa0a7b4a7fde15f75d15209ef7d480feb30adbd61ba12c26
|
3 |
+
size 144048
|
sendit/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
sendit/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f195f662440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f195f6624d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f195f662560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f195f6625f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f195f662680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f195f662710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f195f6627a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f195f662830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f195f6628c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f195f662950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f195f6629e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f195f69ce40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652038862.4551256,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFZGvr5sus8+M7N3veQGVb7EmEI+6vCWvQAAAAAAAAAAs0KcveHQj7oQpJa7VSxVNdzoObuosq46AACAPwAAgD/tpyE+CpdpOuIAgrwWXH+5XWF1PB0BZroAAIA/AACAP2Z2n7sLJjE/AvsivaI9g74XSoA91hSXPQAAAAAAAAAAOkVKvgrlTLurkPo5VemXNt4XlDzapA65AACAPwAAgD9Ab7o9pNBbuU+ikLmLFMC0/aIxO2jQqjgAAIA/AACAP+bjbL07WKY/cNn1vc+yyL7DtpW9dxwEvQAAAAAAAAAADRD3vSnwbrrtdlK6k5GMNZvKkzeTIHU5AACAPwAAgD9Ntdc9gxQHvN3xC71EMyS+rHdFvT7pir0AAIA/AACAP2aMLzy4js+5r0+oOlx8aTa95Ww7orPFuQAAgD8AAIA/1v5wvos3Mj89n1c8Hfo7vpv+gDrmXYK9AAAAAAAAAABAJxm+H9mHu2VP3DuFR5M56OvDPFAzc7oAAIA/AACAP5p95zwc5ro+ioG8vdsd8L0GjFK9An8OvQAAAAAAAAAAJnYkvh9pyrtdQ4c7Uw8pOVGoOD1ymKi6AACAPwAAgD961jQ+wJuZPuZiFL4rWVW+GgOnvFhzTjwAAAAAAAAAAMCl3D1SaIe5LQc1uRY/ubTgVgk8jdtWOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0CUceougV0CUhpRSlIwBbJRN6AOMAXSUR0CC0hqs2eg+dX2UKGgGaAloD0MIZwqd19jTRkCUhpRSlGgVTegDaBZHQILTYhllK9R1fZQoaAZoCWgPQwh8fhghPLxTQJSGlFKUaBVN6ANoFkdAgtSWkrPMS3V9lChoBmgJaA9DCHwNwXGZOmNAlIaUUpRoFU3oA2gWR0CC3BMQEpy7dX2UKGgGaAloD0MIGVbxRuaRCECUhpRSlGgVTT4BaBZHQILw6HARChN1fZQoaAZoCWgPQwgCt+7mqa5WQJSGlFKUaBVN6ANoFkdAgvS6X8fmtHV9lChoBmgJaA9DCJ3ZrtAHczPAlIaUUpRoFU2AAWgWR0CC9g6fapPzdX2UKGgGaAloD0MIX+6To4B6ZUCUhpRSlGgVTegDaBZHQIL2Zk078vV1fZQoaAZoCWgPQwgQBwlRvsAowJSGlFKUaBVNRQFoFkdAgvaJn6Eal3V9lChoBmgJaA9DCC5x5IHICj9AlIaUUpRoFU1uAWgWR0CC9tbTMJQddX2UKGgGaAloD0MIyt+9o8a/VUCUhpRSlGgVTegDaBZHQIMkovtdAxB1fZQoaAZoCWgPQwio4zEDlRE0wJSGlFKUaBVL1mgWR0CDMczbeuV5dX2UKGgGaAloD0MIEW+df7vsNcCUhpRSlGgVTUwBaBZHQIM7ieRPoFF1fZQoaAZoCWgPQwhkeVc9YIpYQJSGlFKUaBVN6ANoFkdAgzyLpA2Q4nV9lChoBmgJaA9DCFG/C1uzTSNAlIaUUpRoFU1nAWgWR0CDQi8hcJMQdX2UKGgGaAloD0MIYAX4bvO9XkCUhpRSlGgVTegDaBZHQINEj4BV+7V1fZQoaAZoCWgPQwiFRNrGn/5ZQJSGlFKUaBVN6ANoFkdAg1B5JK8L8nV9lChoBmgJaA9DCCnqzD0kwllAlIaUUpRoFU3oA2gWR0CDUVlFtsN2dX2UKGgGaAloD0MI6ZjzjH2hUECUhpRSlGgVTegDaBZHQINYuk30f5l1fZQoaAZoCWgPQwhF9dbAVik7wJSGlFKUaBVNMwFoFkdAg2FMlTm4iHV9lChoBmgJaA9DCCtPIOwU415AlIaUUpRoFU3oA2gWR0CDZEWYWtU5dX2UKGgGaAloD0MIgjl6/N5GJ0CUhpRSlGgVTSABaBZHQINowJqqOtJ1fZQoaAZoCWgPQwgTLXk8LQheQJSGlFKUaBVN6ANoFkdAg2oUGVzIWHV9lChoBmgJaA9DCOFdLuI7z19AlIaUUpRoFU3oA2gWR0CDbVSfDk2hdX2UKGgGaAloD0MInnqkwe2TYECUhpRSlGgVTegDaBZHQIN3WRq46Op1fZQoaAZoCWgPQwiRYoBEE1gawJSGlFKUaBVNPgFoFkdAg4rXCsOoYXV9lChoBmgJaA9DCLg/Fw0Z4VlAlIaUUpRoFU3oA2gWR0CDmDQswtaqdX2UKGgGaAloD0MIu+8YHvv6XECUhpRSlGgVTegDaBZHQIOYat1ZDAt1fZQoaAZoCWgPQwjG/NzQlE0lQJSGlFKUaBVN6ANoFkdAg5jLaufVZ3V9lChoBmgJaA9DCDTbFfpgulhAlIaUUpRoFU3oA2gWR0CDyeTSLIgedX2UKGgGaAloD0MIrtNIS+WnVkCUhpRSlGgVTegDaBZHQIPaQClrM1V1fZQoaAZoCWgPQwjOiT20j4lMQJSGlFKUaBVN6ANoFkdAg+b4xk/bCnV9lChoBmgJaA9DCD19BP7wy2BAlIaUUpRoFU3oA2gWR0CD7gCQtBfKdX2UKGgGaAloD0MIWhE10efzRcCUhpRSlGgVTV8BaBZHQIPvDGgi/wl1fZQoaAZoCWgPQwjyJOmayZ5cQJSGlFKUaBVN6ANoFkdAg/7SimEXcnV9lChoBmgJaA9DCNmTwOYcHlhAlIaUUpRoFU3oA2gWR0CD/8fZmI0qdX2UKGgGaAloD0MIfentz0VUXECUhpRSlGgVTegDaBZHQIQHtMuez2R1fZQoaAZoCWgPQwi8XMR3YnxeQJSGlFKUaBVN6ANoFkdAhBPxsVLzw3V9lChoBmgJaA9DCFPsaBzqImFAlIaUUpRoFU3oA2gWR0CEGNkc0cfedX2UKGgGaAloD0MIpWlQNA+9XECUhpRSlGgVTegDaBZHQIQaOQfZElV1fZQoaAZoCWgPQwjn/X+cMDVHwJSGlFKUaBVNdQFoFkdAhBshE8aGYnV9lChoBmgJaA9DCDATRUjdkGFAlIaUUpRoFU3oA2gWR0CEHZfnfVI7dX2UKGgGaAloD0MIVUs6ysHUU0CUhpRSlGgVTegDaBZHQIQoTQb+98J1fZQoaAZoCWgPQwghrTHohCgjwJSGlFKUaBVNOwFoFkdAhCoAwPAfuHV9lChoBmgJaA9DCMalKm1xBUvAlIaUUpRoFU1oAWgWR0CEOBRDTjNqdX2UKGgGaAloD0MI06OpnkwwYUCUhpRSlGgVTegDaBZHQIQ7jewcHW11fZQoaAZoCWgPQwgfR3NkZZ9hQJSGlFKUaBVN6ANoFkdAhEb6FM7EHnV9lChoBmgJaA9DCAlupGyRh1lAlIaUUpRoFU3oA2gWR0CER4UWVNYbdX2UKGgGaAloD0MIrRbYY6KzYECUhpRSlGgVTegDaBZHQIR4WKGcnVp1fZQoaAZoCWgPQwj52ch1UwVeQJSGlFKUaBVN6ANoFkdAhIkJbt7a7HV9lChoBmgJaA9DCOEp5Eo90VJAlIaUUpRoFU3oA2gWR0CEnb5HmRvFdX2UKGgGaAloD0MIx6F+F7adXECUhpRSlGgVTegDaBZHQISe3XI2fkF1fZQoaAZoCWgPQwhETl/P1yZSQJSGlFKUaBVN6ANoFkdAhLAOE25xznV9lChoBmgJaA9DCHZxGw3gH09AlIaUUpRoFU3oA2gWR0CEyDBMzuWsdX2UKGgGaAloD0MIz8DIyxqOZECUhpRSlGgVTegDaBZHQITNXF3pwCN1fZQoaAZoCWgPQwiyD7IsmNReQJSGlFKUaBVN6ANoFkdAhM7h2GIsRXV9lChoBmgJaA9DCBVUVP1KblVAlIaUUpRoFU3oA2gWR0CEz9V+7UXpdX2UKGgGaAloD0MIvaseMI85ZUCUhpRSlGgVTegDaBZHQITSSFdszl91fZQoaAZoCWgPQwiCVmDI6r9XQJSGlFKUaBVN6ANoFkdAhNyylenhsXV9lChoBmgJaA9DCLDL8J9u2l1AlIaUUpRoFU3oA2gWR0CE3i4Ds+mndX2UKGgGaAloD0MIi4nNx7XNXUCUhpRSlGgVTegDaBZHQITqF/BnBcl1fZQoaAZoCWgPQwiy17s/3kNhQJSGlFKUaBVN6ANoFkdAhOzrilzltHV9lChoBmgJaA9DCM6qz9VWnV5AlIaUUpRoFU3oA2gWR0CE9qTmnwXqdX2UKGgGaAloD0MIhKCjVS1VWUCUhpRSlGgVTegDaBZHQIT3HbTMJQd1fZQoaAZoCWgPQwiDaK1oc2BnQJSGlFKUaBVNswJoFkdAhPuyWRigCnV9lChoBmgJaA9DCC0JUFPLk15AlIaUUpRoFU3oA2gWR0CFJj/VAiV0dX2UKGgGaAloD0MI6znpfWMOYECUhpRSlGgVTegDaBZHQIU1bFl05lx1fZQoaAZoCWgPQwgmrI2xE6VhQJSGlFKUaBVN6ANoFkdAhUfwVTJhfHV9lChoBmgJaA9DCMZq8/+q1zFAlIaUUpRoFU2LAWgWR0CFVVX7Lt/ndX2UKGgGaAloD0MIwktw6gPUXUCUhpRSlGgVTegDaBZHQIVY2ZAprk91fZQoaAZoCWgPQwiD+MCO//o2QJSGlFKUaBVNMwFoFkdAhWBPo3aSLnV9lChoBmgJaA9DCLQAbatZQGBAlIaUUpRoFU3oA2gWR0CFbb8Rcu8LdX2UKGgGaAloD0MICvfKvFWnXUCUhpRSlGgVTegDaBZHQIVyZmZmZmZ1fZQoaAZoCWgPQwh5rYTuko9iQJSGlFKUaBVN6ANoFkdAhXO3Lmp2lnV9lChoBmgJaA9DCNVamIV2uGBAlIaUUpRoFU3oA2gWR0CFdI+kgwGodX2UKGgGaAloD0MImODUB5KGXECUhpRSlGgVTegDaBZHQIV2v7aZhKF1fZQoaAZoCWgPQwi86ZYd4uFUQJSGlFKUaBVN6ANoFkdAhX+g3T/hl3V9lChoBmgJaA9DCFn9EYYBLVlAlIaUUpRoFU3oA2gWR0CFgQJj2BatdX2UKGgGaAloD0MIza57K5KoYkCUhpRSlGgVTegDaBZHQIWMi1eBxxV1fZQoaAZoCWgPQwj5TPbPUxpgQJSGlFKUaBVN6ANoFkdAhY96Ezwc53V9lChoBmgJaA9DCKyt2F92b0bAlIaUUpRoFU1XAWgWR0CFlTmbLEDRdX2UKGgGaAloD0MIs+veisTwYUCUhpRSlGgVTegDaBZHQIWZ8ZiuuA91fZQoaAZoCWgPQwgEqn8QyZtdQJSGlFKUaBVN6ANoFkdAhZplSS/0unV9lChoBmgJaA9DCNfep6pQ8mJAlIaUUpRoFU3oA2gWR0CFpOb9ZRsNdX2UKGgGaAloD0MIUbtfBfgXWkCUhpRSlGgVTegDaBZHQIXs0gB91EF1fZQoaAZoCWgPQwhd4sgDkSVcQJSGlFKUaBVN6ANoFkdAhfvkEcKgI3V9lChoBmgJaA9DCCQPRBZpw1ZAlIaUUpRoFU3oA2gWR0CF/8oUBXCCdX2UKGgGaAloD0MIDtsWZbaiYECUhpRSlGgVTegDaBZHQIYHsmKIi1R1fZQoaAZoCWgPQwiPqiaIunFeQJSGlFKUaBVN6ANoFkdAhhojIzWPLnV9lChoBmgJaA9DCK1OzlBcoWFAlIaUUpRoFU3oA2gWR0CGG475Ec81dX2UKGgGaAloD0MIcctHUlK2YUCUhpRSlGgVTegDaBZHQIYcdaIN3GJ1fZQoaAZoCWgPQwilv5fCg5dcQJSGlFKUaBVN6ANoFkdAhh62h7E5yXV9lChoBmgJaA9DCKRQFr6+A15AlIaUUpRoFU3oA2gWR0CGKEdupCKKdX2UKGgGaAloD0MIIEJcOXtRYkCUhpRSlGgVTegDaBZHQIYpuYYzi0h1fZQoaAZoCWgPQwiHqMKf4d5bQJSGlFKUaBVN6ANoFkdAhjYB8x9G7XV9lChoBmgJaA9DCDmYTYBhbFxAlIaUUpRoFU3oA2gWR0CGOSRODaoNdX2UKGgGaAloD0MIle6us6FTYUCUhpRSlGgVTegDaBZHQIY+7S1E3Kl1fZQoaAZoCWgPQwgNiuYBLLdfQJSGlFKUaBVN6ANoFkdAhkOE8zQ/o3V9lChoBmgJaA9DCPbuj/cqvmFAlIaUUpRoFU3oA2gWR0CGQ/m+0w8GdX2UKGgGaAloD0MIZwqd19iUWECUhpRSlGgVTegDaBZHQIZOYYrJ8v51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
sendit/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:962004c3c56f92a2fa1dbc43eea85aca1e14d6f17726ae71ae5b8ded18e54de0
|
3 |
+
size 84829
|
sendit/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4701b8975f111f89812f7ec5df5928e9443baf6431ea2cd8d24d6faa2bb2439f
|
3 |
+
size 43201
|
sendit/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
sendit/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|