Biophyser commited on
Commit
4cc6963
1 Parent(s): cc197bc

First lunar lander RL model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 174.31 +/- 19.84
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f195f662440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f195f6624d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f195f662560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f195f6625f0>", "_build": "<function ActorCriticPolicy._build at 0x7f195f662680>", "forward": "<function ActorCriticPolicy.forward at 0x7f195f662710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f195f6627a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f195f662830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f195f6628c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f195f662950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f195f6629e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f195f69ce40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652038862.4551256, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFZGvr5sus8+M7N3veQGVb7EmEI+6vCWvQAAAAAAAAAAs0KcveHQj7oQpJa7VSxVNdzoObuosq46AACAPwAAgD/tpyE+CpdpOuIAgrwWXH+5XWF1PB0BZroAAIA/AACAP2Z2n7sLJjE/AvsivaI9g74XSoA91hSXPQAAAAAAAAAAOkVKvgrlTLurkPo5VemXNt4XlDzapA65AACAPwAAgD9Ab7o9pNBbuU+ikLmLFMC0/aIxO2jQqjgAAIA/AACAP+bjbL07WKY/cNn1vc+yyL7DtpW9dxwEvQAAAAAAAAAADRD3vSnwbrrtdlK6k5GMNZvKkzeTIHU5AACAPwAAgD9Ntdc9gxQHvN3xC71EMyS+rHdFvT7pir0AAIA/AACAP2aMLzy4js+5r0+oOlx8aTa95Ww7orPFuQAAgD8AAIA/1v5wvos3Mj89n1c8Hfo7vpv+gDrmXYK9AAAAAAAAAABAJxm+H9mHu2VP3DuFR5M56OvDPFAzc7oAAIA/AACAP5p95zwc5ro+ioG8vdsd8L0GjFK9An8OvQAAAAAAAAAAJnYkvh9pyrtdQ4c7Uw8pOVGoOD1ymKi6AACAPwAAgD961jQ+wJuZPuZiFL4rWVW+GgOnvFhzTjwAAAAAAAAAAMCl3D1SaIe5LQc1uRY/ubTgVgk8jdtWOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0CUceougV0CUhpRSlIwBbJRN6AOMAXSUR0CC0hqs2eg+dX2UKGgGaAloD0MIZwqd19jTRkCUhpRSlGgVTegDaBZHQILTYhllK9R1fZQoaAZoCWgPQwh8fhghPLxTQJSGlFKUaBVN6ANoFkdAgtSWkrPMS3V9lChoBmgJaA9DCHwNwXGZOmNAlIaUUpRoFU3oA2gWR0CC3BMQEpy7dX2UKGgGaAloD0MIGVbxRuaRCECUhpRSlGgVTT4BaBZHQILw6HARChN1fZQoaAZoCWgPQwgCt+7mqa5WQJSGlFKUaBVN6ANoFkdAgvS6X8fmtHV9lChoBmgJaA9DCJ3ZrtAHczPAlIaUUpRoFU2AAWgWR0CC9g6fapPzdX2UKGgGaAloD0MIX+6To4B6ZUCUhpRSlGgVTegDaBZHQIL2Zk078vV1fZQoaAZoCWgPQwgQBwlRvsAowJSGlFKUaBVNRQFoFkdAgvaJn6Eal3V9lChoBmgJaA9DCC5x5IHICj9AlIaUUpRoFU1uAWgWR0CC9tbTMJQddX2UKGgGaAloD0MIyt+9o8a/VUCUhpRSlGgVTegDaBZHQIMkovtdAxB1fZQoaAZoCWgPQwio4zEDlRE0wJSGlFKUaBVL1mgWR0CDMczbeuV5dX2UKGgGaAloD0MIEW+df7vsNcCUhpRSlGgVTUwBaBZHQIM7ieRPoFF1fZQoaAZoCWgPQwhkeVc9YIpYQJSGlFKUaBVN6ANoFkdAgzyLpA2Q4nV9lChoBmgJaA9DCFG/C1uzTSNAlIaUUpRoFU1nAWgWR0CDQi8hcJMQdX2UKGgGaAloD0MIYAX4bvO9XkCUhpRSlGgVTegDaBZHQINEj4BV+7V1fZQoaAZoCWgPQwiFRNrGn/5ZQJSGlFKUaBVN6ANoFkdAg1B5JK8L8nV9lChoBmgJaA9DCCnqzD0kwllAlIaUUpRoFU3oA2gWR0CDUVlFtsN2dX2UKGgGaAloD0MI6ZjzjH2hUECUhpRSlGgVTegDaBZHQINYuk30f5l1fZQoaAZoCWgPQwhF9dbAVik7wJSGlFKUaBVNMwFoFkdAg2FMlTm4iHV9lChoBmgJaA9DCCtPIOwU415AlIaUUpRoFU3oA2gWR0CDZEWYWtU5dX2UKGgGaAloD0MIgjl6/N5GJ0CUhpRSlGgVTSABaBZHQINowJqqOtJ1fZQoaAZoCWgPQwgTLXk8LQheQJSGlFKUaBVN6ANoFkdAg2oUGVzIWHV9lChoBmgJaA9DCOFdLuI7z19AlIaUUpRoFU3oA2gWR0CDbVSfDk2hdX2UKGgGaAloD0MInnqkwe2TYECUhpRSlGgVTegDaBZHQIN3WRq46Op1fZQoaAZoCWgPQwiRYoBEE1gawJSGlFKUaBVNPgFoFkdAg4rXCsOoYXV9lChoBmgJaA9DCLg/Fw0Z4VlAlIaUUpRoFU3oA2gWR0CDmDQswtaqdX2UKGgGaAloD0MIu+8YHvv6XECUhpRSlGgVTegDaBZHQIOYat1ZDAt1fZQoaAZoCWgPQwjG/NzQlE0lQJSGlFKUaBVN6ANoFkdAg5jLaufVZ3V9lChoBmgJaA9DCDTbFfpgulhAlIaUUpRoFU3oA2gWR0CDyeTSLIgedX2UKGgGaAloD0MIrtNIS+WnVkCUhpRSlGgVTegDaBZHQIPaQClrM1V1fZQoaAZoCWgPQwjOiT20j4lMQJSGlFKUaBVN6ANoFkdAg+b4xk/bCnV9lChoBmgJaA9DCD19BP7wy2BAlIaUUpRoFU3oA2gWR0CD7gCQtBfKdX2UKGgGaAloD0MIWhE10efzRcCUhpRSlGgVTV8BaBZHQIPvDGgi/wl1fZQoaAZoCWgPQwjyJOmayZ5cQJSGlFKUaBVN6ANoFkdAg/7SimEXcnV9lChoBmgJaA9DCNmTwOYcHlhAlIaUUpRoFU3oA2gWR0CD/8fZmI0qdX2UKGgGaAloD0MIfentz0VUXECUhpRSlGgVTegDaBZHQIQHtMuez2R1fZQoaAZoCWgPQwi8XMR3YnxeQJSGlFKUaBVN6ANoFkdAhBPxsVLzw3V9lChoBmgJaA9DCFPsaBzqImFAlIaUUpRoFU3oA2gWR0CEGNkc0cfedX2UKGgGaAloD0MIpWlQNA+9XECUhpRSlGgVTegDaBZHQIQaOQfZElV1fZQoaAZoCWgPQwjn/X+cMDVHwJSGlFKUaBVNdQFoFkdAhBshE8aGYnV9lChoBmgJaA9DCDATRUjdkGFAlIaUUpRoFU3oA2gWR0CEHZfnfVI7dX2UKGgGaAloD0MIVUs6ysHUU0CUhpRSlGgVTegDaBZHQIQoTQb+98J1fZQoaAZoCWgPQwghrTHohCgjwJSGlFKUaBVNOwFoFkdAhCoAwPAfuHV9lChoBmgJaA9DCMalKm1xBUvAlIaUUpRoFU1oAWgWR0CEOBRDTjNqdX2UKGgGaAloD0MI06OpnkwwYUCUhpRSlGgVTegDaBZHQIQ7jewcHW11fZQoaAZoCWgPQwgfR3NkZZ9hQJSGlFKUaBVN6ANoFkdAhEb6FM7EHnV9lChoBmgJaA9DCAlupGyRh1lAlIaUUpRoFU3oA2gWR0CER4UWVNYbdX2UKGgGaAloD0MIrRbYY6KzYECUhpRSlGgVTegDaBZHQIR4WKGcnVp1fZQoaAZoCWgPQwj52ch1UwVeQJSGlFKUaBVN6ANoFkdAhIkJbt7a7HV9lChoBmgJaA9DCOEp5Eo90VJAlIaUUpRoFU3oA2gWR0CEnb5HmRvFdX2UKGgGaAloD0MIx6F+F7adXECUhpRSlGgVTegDaBZHQISe3XI2fkF1fZQoaAZoCWgPQwhETl/P1yZSQJSGlFKUaBVN6ANoFkdAhLAOE25xznV9lChoBmgJaA9DCHZxGw3gH09AlIaUUpRoFU3oA2gWR0CEyDBMzuWsdX2UKGgGaAloD0MIz8DIyxqOZECUhpRSlGgVTegDaBZHQITNXF3pwCN1fZQoaAZoCWgPQwiyD7IsmNReQJSGlFKUaBVN6ANoFkdAhM7h2GIsRXV9lChoBmgJaA9DCBVUVP1KblVAlIaUUpRoFU3oA2gWR0CEz9V+7UXpdX2UKGgGaAloD0MIvaseMI85ZUCUhpRSlGgVTegDaBZHQITSSFdszl91fZQoaAZoCWgPQwiCVmDI6r9XQJSGlFKUaBVN6ANoFkdAhNyylenhsXV9lChoBmgJaA9DCLDL8J9u2l1AlIaUUpRoFU3oA2gWR0CE3i4Ds+mndX2UKGgGaAloD0MIi4nNx7XNXUCUhpRSlGgVTegDaBZHQITqF/BnBcl1fZQoaAZoCWgPQwiy17s/3kNhQJSGlFKUaBVN6ANoFkdAhOzrilzltHV9lChoBmgJaA9DCM6qz9VWnV5AlIaUUpRoFU3oA2gWR0CE9qTmnwXqdX2UKGgGaAloD0MIhKCjVS1VWUCUhpRSlGgVTegDaBZHQIT3HbTMJQd1fZQoaAZoCWgPQwiDaK1oc2BnQJSGlFKUaBVNswJoFkdAhPuyWRigCnV9lChoBmgJaA9DCC0JUFPLk15AlIaUUpRoFU3oA2gWR0CFJj/VAiV0dX2UKGgGaAloD0MI6znpfWMOYECUhpRSlGgVTegDaBZHQIU1bFl05lx1fZQoaAZoCWgPQwgmrI2xE6VhQJSGlFKUaBVN6ANoFkdAhUfwVTJhfHV9lChoBmgJaA9DCMZq8/+q1zFAlIaUUpRoFU2LAWgWR0CFVVX7Lt/ndX2UKGgGaAloD0MIwktw6gPUXUCUhpRSlGgVTegDaBZHQIVY2ZAprk91fZQoaAZoCWgPQwiD+MCO//o2QJSGlFKUaBVNMwFoFkdAhWBPo3aSLnV9lChoBmgJaA9DCLQAbatZQGBAlIaUUpRoFU3oA2gWR0CFbb8Rcu8LdX2UKGgGaAloD0MICvfKvFWnXUCUhpRSlGgVTegDaBZHQIVyZmZmZmZ1fZQoaAZoCWgPQwh5rYTuko9iQJSGlFKUaBVN6ANoFkdAhXO3Lmp2lnV9lChoBmgJaA9DCNVamIV2uGBAlIaUUpRoFU3oA2gWR0CFdI+kgwGodX2UKGgGaAloD0MImODUB5KGXECUhpRSlGgVTegDaBZHQIV2v7aZhKF1fZQoaAZoCWgPQwi86ZYd4uFUQJSGlFKUaBVN6ANoFkdAhX+g3T/hl3V9lChoBmgJaA9DCFn9EYYBLVlAlIaUUpRoFU3oA2gWR0CFgQJj2BatdX2UKGgGaAloD0MIza57K5KoYkCUhpRSlGgVTegDaBZHQIWMi1eBxxV1fZQoaAZoCWgPQwj5TPbPUxpgQJSGlFKUaBVN6ANoFkdAhY96Ezwc53V9lChoBmgJaA9DCKyt2F92b0bAlIaUUpRoFU1XAWgWR0CFlTmbLEDRdX2UKGgGaAloD0MIs+veisTwYUCUhpRSlGgVTegDaBZHQIWZ8ZiuuA91fZQoaAZoCWgPQwgEqn8QyZtdQJSGlFKUaBVN6ANoFkdAhZplSS/0unV9lChoBmgJaA9DCNfep6pQ8mJAlIaUUpRoFU3oA2gWR0CFpOb9ZRsNdX2UKGgGaAloD0MIUbtfBfgXWkCUhpRSlGgVTegDaBZHQIXs0gB91EF1fZQoaAZoCWgPQwhd4sgDkSVcQJSGlFKUaBVN6ANoFkdAhfvkEcKgI3V9lChoBmgJaA9DCCQPRBZpw1ZAlIaUUpRoFU3oA2gWR0CF/8oUBXCCdX2UKGgGaAloD0MIDtsWZbaiYECUhpRSlGgVTegDaBZHQIYHsmKIi1R1fZQoaAZoCWgPQwiPqiaIunFeQJSGlFKUaBVN6ANoFkdAhhojIzWPLnV9lChoBmgJaA9DCK1OzlBcoWFAlIaUUpRoFU3oA2gWR0CGG475Ec81dX2UKGgGaAloD0MIcctHUlK2YUCUhpRSlGgVTegDaBZHQIYcdaIN3GJ1fZQoaAZoCWgPQwilv5fCg5dcQJSGlFKUaBVN6ANoFkdAhh62h7E5yXV9lChoBmgJaA9DCKRQFr6+A15AlIaUUpRoFU3oA2gWR0CGKEdupCKKdX2UKGgGaAloD0MIIEJcOXtRYkCUhpRSlGgVTegDaBZHQIYpuYYzi0h1fZQoaAZoCWgPQwiHqMKf4d5bQJSGlFKUaBVN6ANoFkdAhjYB8x9G7XV9lChoBmgJaA9DCDmYTYBhbFxAlIaUUpRoFU3oA2gWR0CGOSRODaoNdX2UKGgGaAloD0MIle6us6FTYUCUhpRSlGgVTegDaBZHQIY+7S1E3Kl1fZQoaAZoCWgPQwgNiuYBLLdfQJSGlFKUaBVN6ANoFkdAhkOE8zQ/o3V9lChoBmgJaA9DCPbuj/cqvmFAlIaUUpRoFU3oA2gWR0CGQ/m+0w8GdX2UKGgGaAloD0MIZwqd19iUWECUhpRSlGgVTegDaBZHQIZOYYrJ8v51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb17b53f56b900641ecd483dee976cf16958217a763b58d4f6d710e10c438eef
3
+ size 249785
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 174.31029362337796, "std_reward": 19.84344226003817, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T20:13:02.742111"}
sendit.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e1e120cb12cae9efa0a7b4a7fde15f75d15209ef7d480feb30adbd61ba12c26
3
+ size 144048
sendit/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
sendit/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f195f662440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f195f6624d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f195f662560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f195f6625f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f195f662680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f195f662710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f195f6627a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f195f662830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f195f6628c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f195f662950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f195f6629e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f195f69ce40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652038862.4551256,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFZGvr5sus8+M7N3veQGVb7EmEI+6vCWvQAAAAAAAAAAs0KcveHQj7oQpJa7VSxVNdzoObuosq46AACAPwAAgD/tpyE+CpdpOuIAgrwWXH+5XWF1PB0BZroAAIA/AACAP2Z2n7sLJjE/AvsivaI9g74XSoA91hSXPQAAAAAAAAAAOkVKvgrlTLurkPo5VemXNt4XlDzapA65AACAPwAAgD9Ab7o9pNBbuU+ikLmLFMC0/aIxO2jQqjgAAIA/AACAP+bjbL07WKY/cNn1vc+yyL7DtpW9dxwEvQAAAAAAAAAADRD3vSnwbrrtdlK6k5GMNZvKkzeTIHU5AACAPwAAgD9Ntdc9gxQHvN3xC71EMyS+rHdFvT7pir0AAIA/AACAP2aMLzy4js+5r0+oOlx8aTa95Ww7orPFuQAAgD8AAIA/1v5wvos3Mj89n1c8Hfo7vpv+gDrmXYK9AAAAAAAAAABAJxm+H9mHu2VP3DuFR5M56OvDPFAzc7oAAIA/AACAP5p95zwc5ro+ioG8vdsd8L0GjFK9An8OvQAAAAAAAAAAJnYkvh9pyrtdQ4c7Uw8pOVGoOD1ymKi6AACAPwAAgD961jQ+wJuZPuZiFL4rWVW+GgOnvFhzTjwAAAAAAAAAAMCl3D1SaIe5LQc1uRY/ubTgVgk8jdtWOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0CUceougV0CUhpRSlIwBbJRN6AOMAXSUR0CC0hqs2eg+dX2UKGgGaAloD0MIZwqd19jTRkCUhpRSlGgVTegDaBZHQILTYhllK9R1fZQoaAZoCWgPQwh8fhghPLxTQJSGlFKUaBVN6ANoFkdAgtSWkrPMS3V9lChoBmgJaA9DCHwNwXGZOmNAlIaUUpRoFU3oA2gWR0CC3BMQEpy7dX2UKGgGaAloD0MIGVbxRuaRCECUhpRSlGgVTT4BaBZHQILw6HARChN1fZQoaAZoCWgPQwgCt+7mqa5WQJSGlFKUaBVN6ANoFkdAgvS6X8fmtHV9lChoBmgJaA9DCJ3ZrtAHczPAlIaUUpRoFU2AAWgWR0CC9g6fapPzdX2UKGgGaAloD0MIX+6To4B6ZUCUhpRSlGgVTegDaBZHQIL2Zk078vV1fZQoaAZoCWgPQwgQBwlRvsAowJSGlFKUaBVNRQFoFkdAgvaJn6Eal3V9lChoBmgJaA9DCC5x5IHICj9AlIaUUpRoFU1uAWgWR0CC9tbTMJQddX2UKGgGaAloD0MIyt+9o8a/VUCUhpRSlGgVTegDaBZHQIMkovtdAxB1fZQoaAZoCWgPQwio4zEDlRE0wJSGlFKUaBVL1mgWR0CDMczbeuV5dX2UKGgGaAloD0MIEW+df7vsNcCUhpRSlGgVTUwBaBZHQIM7ieRPoFF1fZQoaAZoCWgPQwhkeVc9YIpYQJSGlFKUaBVN6ANoFkdAgzyLpA2Q4nV9lChoBmgJaA9DCFG/C1uzTSNAlIaUUpRoFU1nAWgWR0CDQi8hcJMQdX2UKGgGaAloD0MIYAX4bvO9XkCUhpRSlGgVTegDaBZHQINEj4BV+7V1fZQoaAZoCWgPQwiFRNrGn/5ZQJSGlFKUaBVN6ANoFkdAg1B5JK8L8nV9lChoBmgJaA9DCCnqzD0kwllAlIaUUpRoFU3oA2gWR0CDUVlFtsN2dX2UKGgGaAloD0MI6ZjzjH2hUECUhpRSlGgVTegDaBZHQINYuk30f5l1fZQoaAZoCWgPQwhF9dbAVik7wJSGlFKUaBVNMwFoFkdAg2FMlTm4iHV9lChoBmgJaA9DCCtPIOwU415AlIaUUpRoFU3oA2gWR0CDZEWYWtU5dX2UKGgGaAloD0MIgjl6/N5GJ0CUhpRSlGgVTSABaBZHQINowJqqOtJ1fZQoaAZoCWgPQwgTLXk8LQheQJSGlFKUaBVN6ANoFkdAg2oUGVzIWHV9lChoBmgJaA9DCOFdLuI7z19AlIaUUpRoFU3oA2gWR0CDbVSfDk2hdX2UKGgGaAloD0MInnqkwe2TYECUhpRSlGgVTegDaBZHQIN3WRq46Op1fZQoaAZoCWgPQwiRYoBEE1gawJSGlFKUaBVNPgFoFkdAg4rXCsOoYXV9lChoBmgJaA9DCLg/Fw0Z4VlAlIaUUpRoFU3oA2gWR0CDmDQswtaqdX2UKGgGaAloD0MIu+8YHvv6XECUhpRSlGgVTegDaBZHQIOYat1ZDAt1fZQoaAZoCWgPQwjG/NzQlE0lQJSGlFKUaBVN6ANoFkdAg5jLaufVZ3V9lChoBmgJaA9DCDTbFfpgulhAlIaUUpRoFU3oA2gWR0CDyeTSLIgedX2UKGgGaAloD0MIrtNIS+WnVkCUhpRSlGgVTegDaBZHQIPaQClrM1V1fZQoaAZoCWgPQwjOiT20j4lMQJSGlFKUaBVN6ANoFkdAg+b4xk/bCnV9lChoBmgJaA9DCD19BP7wy2BAlIaUUpRoFU3oA2gWR0CD7gCQtBfKdX2UKGgGaAloD0MIWhE10efzRcCUhpRSlGgVTV8BaBZHQIPvDGgi/wl1fZQoaAZoCWgPQwjyJOmayZ5cQJSGlFKUaBVN6ANoFkdAg/7SimEXcnV9lChoBmgJaA9DCNmTwOYcHlhAlIaUUpRoFU3oA2gWR0CD/8fZmI0qdX2UKGgGaAloD0MIfentz0VUXECUhpRSlGgVTegDaBZHQIQHtMuez2R1fZQoaAZoCWgPQwi8XMR3YnxeQJSGlFKUaBVN6ANoFkdAhBPxsVLzw3V9lChoBmgJaA9DCFPsaBzqImFAlIaUUpRoFU3oA2gWR0CEGNkc0cfedX2UKGgGaAloD0MIpWlQNA+9XECUhpRSlGgVTegDaBZHQIQaOQfZElV1fZQoaAZoCWgPQwjn/X+cMDVHwJSGlFKUaBVNdQFoFkdAhBshE8aGYnV9lChoBmgJaA9DCDATRUjdkGFAlIaUUpRoFU3oA2gWR0CEHZfnfVI7dX2UKGgGaAloD0MIVUs6ysHUU0CUhpRSlGgVTegDaBZHQIQoTQb+98J1fZQoaAZoCWgPQwghrTHohCgjwJSGlFKUaBVNOwFoFkdAhCoAwPAfuHV9lChoBmgJaA9DCMalKm1xBUvAlIaUUpRoFU1oAWgWR0CEOBRDTjNqdX2UKGgGaAloD0MI06OpnkwwYUCUhpRSlGgVTegDaBZHQIQ7jewcHW11fZQoaAZoCWgPQwgfR3NkZZ9hQJSGlFKUaBVN6ANoFkdAhEb6FM7EHnV9lChoBmgJaA9DCAlupGyRh1lAlIaUUpRoFU3oA2gWR0CER4UWVNYbdX2UKGgGaAloD0MIrRbYY6KzYECUhpRSlGgVTegDaBZHQIR4WKGcnVp1fZQoaAZoCWgPQwj52ch1UwVeQJSGlFKUaBVN6ANoFkdAhIkJbt7a7HV9lChoBmgJaA9DCOEp5Eo90VJAlIaUUpRoFU3oA2gWR0CEnb5HmRvFdX2UKGgGaAloD0MIx6F+F7adXECUhpRSlGgVTegDaBZHQISe3XI2fkF1fZQoaAZoCWgPQwhETl/P1yZSQJSGlFKUaBVN6ANoFkdAhLAOE25xznV9lChoBmgJaA9DCHZxGw3gH09AlIaUUpRoFU3oA2gWR0CEyDBMzuWsdX2UKGgGaAloD0MIz8DIyxqOZECUhpRSlGgVTegDaBZHQITNXF3pwCN1fZQoaAZoCWgPQwiyD7IsmNReQJSGlFKUaBVN6ANoFkdAhM7h2GIsRXV9lChoBmgJaA9DCBVUVP1KblVAlIaUUpRoFU3oA2gWR0CEz9V+7UXpdX2UKGgGaAloD0MIvaseMI85ZUCUhpRSlGgVTegDaBZHQITSSFdszl91fZQoaAZoCWgPQwiCVmDI6r9XQJSGlFKUaBVN6ANoFkdAhNyylenhsXV9lChoBmgJaA9DCLDL8J9u2l1AlIaUUpRoFU3oA2gWR0CE3i4Ds+mndX2UKGgGaAloD0MIi4nNx7XNXUCUhpRSlGgVTegDaBZHQITqF/BnBcl1fZQoaAZoCWgPQwiy17s/3kNhQJSGlFKUaBVN6ANoFkdAhOzrilzltHV9lChoBmgJaA9DCM6qz9VWnV5AlIaUUpRoFU3oA2gWR0CE9qTmnwXqdX2UKGgGaAloD0MIhKCjVS1VWUCUhpRSlGgVTegDaBZHQIT3HbTMJQd1fZQoaAZoCWgPQwiDaK1oc2BnQJSGlFKUaBVNswJoFkdAhPuyWRigCnV9lChoBmgJaA9DCC0JUFPLk15AlIaUUpRoFU3oA2gWR0CFJj/VAiV0dX2UKGgGaAloD0MI6znpfWMOYECUhpRSlGgVTegDaBZHQIU1bFl05lx1fZQoaAZoCWgPQwgmrI2xE6VhQJSGlFKUaBVN6ANoFkdAhUfwVTJhfHV9lChoBmgJaA9DCMZq8/+q1zFAlIaUUpRoFU2LAWgWR0CFVVX7Lt/ndX2UKGgGaAloD0MIwktw6gPUXUCUhpRSlGgVTegDaBZHQIVY2ZAprk91fZQoaAZoCWgPQwiD+MCO//o2QJSGlFKUaBVNMwFoFkdAhWBPo3aSLnV9lChoBmgJaA9DCLQAbatZQGBAlIaUUpRoFU3oA2gWR0CFbb8Rcu8LdX2UKGgGaAloD0MICvfKvFWnXUCUhpRSlGgVTegDaBZHQIVyZmZmZmZ1fZQoaAZoCWgPQwh5rYTuko9iQJSGlFKUaBVN6ANoFkdAhXO3Lmp2lnV9lChoBmgJaA9DCNVamIV2uGBAlIaUUpRoFU3oA2gWR0CFdI+kgwGodX2UKGgGaAloD0MImODUB5KGXECUhpRSlGgVTegDaBZHQIV2v7aZhKF1fZQoaAZoCWgPQwi86ZYd4uFUQJSGlFKUaBVN6ANoFkdAhX+g3T/hl3V9lChoBmgJaA9DCFn9EYYBLVlAlIaUUpRoFU3oA2gWR0CFgQJj2BatdX2UKGgGaAloD0MIza57K5KoYkCUhpRSlGgVTegDaBZHQIWMi1eBxxV1fZQoaAZoCWgPQwj5TPbPUxpgQJSGlFKUaBVN6ANoFkdAhY96Ezwc53V9lChoBmgJaA9DCKyt2F92b0bAlIaUUpRoFU1XAWgWR0CFlTmbLEDRdX2UKGgGaAloD0MIs+veisTwYUCUhpRSlGgVTegDaBZHQIWZ8ZiuuA91fZQoaAZoCWgPQwgEqn8QyZtdQJSGlFKUaBVN6ANoFkdAhZplSS/0unV9lChoBmgJaA9DCNfep6pQ8mJAlIaUUpRoFU3oA2gWR0CFpOb9ZRsNdX2UKGgGaAloD0MIUbtfBfgXWkCUhpRSlGgVTegDaBZHQIXs0gB91EF1fZQoaAZoCWgPQwhd4sgDkSVcQJSGlFKUaBVN6ANoFkdAhfvkEcKgI3V9lChoBmgJaA9DCCQPRBZpw1ZAlIaUUpRoFU3oA2gWR0CF/8oUBXCCdX2UKGgGaAloD0MIDtsWZbaiYECUhpRSlGgVTegDaBZHQIYHsmKIi1R1fZQoaAZoCWgPQwiPqiaIunFeQJSGlFKUaBVN6ANoFkdAhhojIzWPLnV9lChoBmgJaA9DCK1OzlBcoWFAlIaUUpRoFU3oA2gWR0CGG475Ec81dX2UKGgGaAloD0MIcctHUlK2YUCUhpRSlGgVTegDaBZHQIYcdaIN3GJ1fZQoaAZoCWgPQwilv5fCg5dcQJSGlFKUaBVN6ANoFkdAhh62h7E5yXV9lChoBmgJaA9DCKRQFr6+A15AlIaUUpRoFU3oA2gWR0CGKEdupCKKdX2UKGgGaAloD0MIIEJcOXtRYkCUhpRSlGgVTegDaBZHQIYpuYYzi0h1fZQoaAZoCWgPQwiHqMKf4d5bQJSGlFKUaBVN6ANoFkdAhjYB8x9G7XV9lChoBmgJaA9DCDmYTYBhbFxAlIaUUpRoFU3oA2gWR0CGOSRODaoNdX2UKGgGaAloD0MIle6us6FTYUCUhpRSlGgVTegDaBZHQIY+7S1E3Kl1fZQoaAZoCWgPQwgNiuYBLLdfQJSGlFKUaBVN6ANoFkdAhkOE8zQ/o3V9lChoBmgJaA9DCPbuj/cqvmFAlIaUUpRoFU3oA2gWR0CGQ/m+0w8GdX2UKGgGaAloD0MIZwqd19iUWECUhpRSlGgVTegDaBZHQIZOYYrJ8v51ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
sendit/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:962004c3c56f92a2fa1dbc43eea85aca1e14d6f17726ae71ae5b8ded18e54de0
3
+ size 84829
sendit/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4701b8975f111f89812f7ec5df5928e9443baf6431ea2cd8d24d6faa2bb2439f
3
+ size 43201
sendit/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
sendit/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0