Model save
Browse files- README.md +86 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: Bisher/wav2vec2_ASV_deepfake_audio_detection
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [Bisher/wav2vec2_ASV_deepfake_audio_detection](https://huggingface.co/Bisher/wav2vec2_ASV_deepfake_audio_detection) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4076
|
24 |
+
- Accuracy: 0.9115
|
25 |
+
- Precision: 0.9131
|
26 |
+
- Recall: 0.9115
|
27 |
+
- F1: 0.8803
|
28 |
+
- Tp: 265
|
29 |
+
- Tn: 17893
|
30 |
+
- Fn: 1742
|
31 |
+
- Fp: 20
|
32 |
+
- Eer: 0.0588
|
33 |
+
- Min Tdcf: 0.0271
|
34 |
+
- Auc Roc: 0.9849
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 3e-05
|
54 |
+
- train_batch_size: 152
|
55 |
+
- eval_batch_size: 152
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 4
|
58 |
+
- total_train_batch_size: 608
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 3
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Tp | Tn | Fn | Fp | Eer | Min Tdcf | Auc Roc |
|
68 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:---:|:-----:|:----:|:--:|:------:|:--------:|:-------:|
|
69 |
+
| 0.025 | 0.0490 | 10 | 0.3573 | 0.9139 | 0.9168 | 0.9139 | 0.8847 | 308 | 17896 | 1699 | 17 | 0.0826 | 0.0329 | 0.9732 |
|
70 |
+
| 0.0219 | 0.0979 | 20 | 0.3002 | 0.9152 | 0.9172 | 0.9152 | 0.8875 | 339 | 17891 | 1668 | 22 | 0.0757 | 0.0321 | 0.9759 |
|
71 |
+
| 0.0193 | 0.1469 | 30 | 0.3557 | 0.9159 | 0.9178 | 0.9159 | 0.8889 | 354 | 17890 | 1653 | 23 | 0.0710 | 0.0320 | 0.9541 |
|
72 |
+
| 0.0197 | 0.1958 | 40 | 0.3963 | 0.9191 | 0.9206 | 0.9191 | 0.8951 | 423 | 17885 | 1584 | 28 | 0.0802 | 0.0325 | 0.9453 |
|
73 |
+
| 0.0181 | 0.2448 | 50 | 0.3524 | 0.9155 | 0.9176 | 0.9155 | 0.8882 | 346 | 17891 | 1661 | 22 | 0.0673 | 0.0324 | 0.9794 |
|
74 |
+
| 0.0152 | 0.2938 | 60 | 0.5161 | 0.9050 | 0.9102 | 0.9050 | 0.8654 | 119 | 17908 | 1888 | 5 | 0.0857 | 0.0314 | 0.9582 |
|
75 |
+
| 0.0155 | 0.3427 | 70 | 0.6375 | 0.9037 | 0.9120 | 0.9037 | 0.8622 | 90 | 17912 | 1917 | 1 | 0.1395 | 0.0307 | 0.9384 |
|
76 |
+
| 0.0193 | 0.3917 | 80 | 0.3521 | 0.9119 | 0.9153 | 0.9119 | 0.8808 | 267 | 17899 | 1740 | 14 | 0.0643 | 0.0309 | 0.9816 |
|
77 |
+
| 0.0158 | 0.4406 | 90 | 0.3775 | 0.9066 | 0.9113 | 0.9066 | 0.8692 | 154 | 17906 | 1853 | 7 | 0.0613 | 0.0290 | 0.9839 |
|
78 |
+
| 0.017 | 0.4896 | 100 | 0.4076 | 0.9115 | 0.9131 | 0.9115 | 0.8803 | 265 | 17893 | 1742 | 20 | 0.0588 | 0.0271 | 0.9849 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.44.0
|
84 |
+
- Pytorch 2.4.0
|
85 |
+
- Datasets 2.21.0
|
86 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 378302360
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65ae766833a067fb45e1ead14aabdaf3e97c21e6bb2870c49af1b32049d877fe
|
3 |
size 378302360
|