File size: 4,500 Bytes
c8c2de1 cc90758 c8c2de1 cc90758 ec6789b c8c2de1 cc90758 c8c2de1 06ffed8 41eaf40 c8c2de1 cc90758 c8c2de1 082cccc c8c2de1 cc90758 c8c2de1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
language:
- af
- am
- ar
- as
- az
- be
- bg
- bn
- bo
- bs
- ca
- ceb
- co
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- haw
- he
- hi
- hmn
- hr
- ht
- hu
- hy
- id
- ig
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- lv
- mg
- mi
- mk
- ml
- mn
- mr
- ms
- mt
- my
- ne
- nl
- no
- ny
- or
- pa
- pl
- pt
- ro
- ru
- rw
- si
- sk
- sl
- sm
- sn
- so
- sq
- sr
- st
- su
- sv
- sw
- ta
- te
- tg
- th
- tk
- tl
- tr
- tt
- ug
- uk
- ur
- uz
- vi
- wo
- xh
- yi
- yo
- zh
- zu
tags:
- bert
- sentence_embedding
- multilingual
- google
- sentence-similarity
license: apache-2.0
datasets:
- CommonCrawl
- Wikipedia
---
Copy of setu4993/LaBSE that returns the sentence embeddings (pooler_output) and implements caching
Original Model Card:
# LaBSE
## Model description
Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval.
- Model: [HuggingFace's model hub](https://huggingface.co/setu4993/LaBSE).
- Paper: [arXiv](https://arxiv.org/abs/2007.01852).
- Original model: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2).
- Blog post: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html).
- Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt).
This is migrated from the v2 model on the TF Hub, which uses dict-based input. The embeddings produced by both the versions of the model are [equivalent](https://github.com/setu4993/convert-labse-tf-pt/blob/ec3a019159a54ed6493181a64486c2808c01f216/tests/test_conversion.py#L31).
## Usage
Using the model:
```python
import torch
from transformers import BertModel, BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
model = BertModel.from_pretrained("setu4993/LaBSE")
model = model.eval()
english_sentences = [
"dog",
"Puppies are nice.",
"I enjoy taking long walks along the beach with my dog.",
]
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
english_outputs = model(**english_inputs)
```
To get the sentence embeddings, use the pooler output:
```python
english_embeddings = english_outputs.pooler_output
```
Output for other languages:
```python
italian_sentences = [
"cane",
"I cuccioli sono carini.",
"Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.",
]
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"]
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True)
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
italian_outputs = model(**italian_inputs)
japanese_outputs = model(**japanese_inputs)
italian_embeddings = italian_outputs.pooler_output
japanese_embeddings = japanese_outputs.pooler_output
```
For similarity between sentences, an L2-norm is recommended before calculating the similarity:
```python
import torch.nn.functional as F
def similarity(embeddings_1, embeddings_2):
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
return torch.matmul(
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
)
print(similarity(english_embeddings, italian_embeddings))
print(similarity(english_embeddings, japanese_embeddings))
print(similarity(italian_embeddings, japanese_embeddings))
```
## Details
Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852).
### BibTeX entry and citation info
```bibtex
@misc{feng2020languageagnostic,
title={Language-agnostic BERT Sentence Embedding},
author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang},
year={2020},
eprint={2007.01852},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|