Upload llava-v1.6-vicuna-7b checkpoint
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llava-v1.6-vicuna-7b/README.md +202 -0
- llava-v1.6-vicuna-7b/adapter_config.json +34 -0
- llava-v1.6-vicuna-7b/adapter_model.safetensors +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/README.md +202 -0
- llava-v1.6-vicuna-7b/checkpoint-250/adapter_config.json +34 -0
- llava-v1.6-vicuna-7b/checkpoint-250/adapter_model.safetensors +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/latest +1 -0
- llava-v1.6-vicuna-7b/checkpoint-250/rng_state_0.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/rng_state_1.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/rng_state_2.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/rng_state_3.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/special_tokens_map.json +24 -0
- llava-v1.6-vicuna-7b/checkpoint-250/tokenizer.model +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/tokenizer_config.json +43 -0
- llava-v1.6-vicuna-7b/checkpoint-250/trainer_state.json +3783 -0
- llava-v1.6-vicuna-7b/checkpoint-250/training_args.bin +3 -0
- llava-v1.6-vicuna-7b/checkpoint-250/zero_to_fp32.py +604 -0
- llava-v1.6-vicuna-7b/checkpoint-320/README.md +202 -0
- llava-v1.6-vicuna-7b/checkpoint-320/adapter_config.json +34 -0
- llava-v1.6-vicuna-7b/checkpoint-320/adapter_model.safetensors +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/latest +1 -0
- llava-v1.6-vicuna-7b/checkpoint-320/rng_state_0.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/rng_state_1.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/rng_state_2.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/rng_state_3.pth +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/special_tokens_map.json +24 -0
- llava-v1.6-vicuna-7b/checkpoint-320/tokenizer.model +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/tokenizer_config.json +43 -0
- llava-v1.6-vicuna-7b/checkpoint-320/trainer_state.json +0 -0
- llava-v1.6-vicuna-7b/checkpoint-320/training_args.bin +3 -0
- llava-v1.6-vicuna-7b/checkpoint-320/zero_to_fp32.py +604 -0
- llava-v1.6-vicuna-7b/config.json +76 -0
- llava-v1.6-vicuna-7b/non_lora_trainables.bin +3 -0
- llava-v1.6-vicuna-7b/optimizer.pt +3 -0
llava-v1.6-vicuna-7b/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.6-vicuna-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
llava-v1.6-vicuna-7b/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"o_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"k_proj",
|
26 |
+
"v_proj",
|
27 |
+
"up_proj",
|
28 |
+
"down_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
llava-v1.6-vicuna-7b/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62efdd9d84e66cfc4095550fcdaa5b6224f73e2bd94f6ed848b1546da576e22d
|
3 |
+
size 42421336
|
llava-v1.6-vicuna-7b/checkpoint-250/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.6-vicuna-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
llava-v1.6-vicuna-7b/checkpoint-250/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"v_proj",
|
25 |
+
"down_proj",
|
26 |
+
"o_proj",
|
27 |
+
"k_proj",
|
28 |
+
"up_proj",
|
29 |
+
"gate_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
llava-v1.6-vicuna-7b/checkpoint-250/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62efdd9d84e66cfc4095550fcdaa5b6224f73e2bd94f6ed848b1546da576e22d
|
3 |
+
size 42421336
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53103e06a5d611618fdd7d4499d9a429c91d6d771bc563b84c01f326e11aaba6
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:677120a99891df3a884e1a8f8988c4ed0e7a41c909cb08eab86af46f13949114
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff52b819ca639c237933403220e55638b75cd7b423042db2aba6ca657a4f65cf
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a929c1a8a86028614c89037068984fd08221959bed2223579d48b1a6f217ff4f
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11fd3eadb7c27f2cb6679ccc1eaefe767dc262590784f2cfa3cd87f4aacd36d3
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a21d34bcdb10e7befcffe4fe5018d6c8fbf617f9279feb97ca5e3dba698b8577
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a37b14ef13d5890f298d26a399f2d3e79b2731d2c024051e064f284fc3f96e4e
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-250/global_step250/zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f484fda7e2347ae9431e40c3fc3be548c6671d6958f0d943d96bcb4d23ce39a0
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-250/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step250
|
llava-v1.6-vicuna-7b/checkpoint-250/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:593bd3951c021cbb7bc83f0c6bddb231b6a5e79c52497c8f43126c62acb2d702
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-250/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d241471d3a91780ba4a9fb7ebb7fd7ee2dba99fc21ec351ce86a0ee75b95fef
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-250/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3933f6586cc586a8dc1592325aeffe4b89c021f6a722b0dfb9bfed65dd1e1018
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-250/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75c1e54d38ed160c3abfe7698770cedbec73a956b3fe6708d564ffc927944fab
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-250/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
llava-v1.6-vicuna-7b/checkpoint-250/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
llava-v1.6-vicuna-7b/checkpoint-250/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 2048,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
llava-v1.6-vicuna-7b/checkpoint-250/trainer_state.json
ADDED
@@ -0,0 +1,3783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.6768932938575745,
|
3 |
+
"best_model_checkpoint": "./checkpoints/llava-v1.6-vicuna-7b/checkpoint-250",
|
4 |
+
"epoch": 7.8125,
|
5 |
+
"eval_steps": 1.0,
|
6 |
+
"global_step": 250,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03125,
|
13 |
+
"grad_norm": 1.0817695604199613,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.3872,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.03125,
|
20 |
+
"eval_loss": 1.4023343324661255,
|
21 |
+
"eval_runtime": 35.2562,
|
22 |
+
"eval_samples_per_second": 5.673,
|
23 |
+
"eval_steps_per_second": 0.369,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.0625,
|
28 |
+
"grad_norm": 0.8573794343563677,
|
29 |
+
"learning_rate": 8.613531161467863e-06,
|
30 |
+
"loss": 1.3352,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.0625,
|
35 |
+
"eval_loss": 1.4023343324661255,
|
36 |
+
"eval_runtime": 27.8829,
|
37 |
+
"eval_samples_per_second": 7.173,
|
38 |
+
"eval_steps_per_second": 0.466,
|
39 |
+
"step": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.09375,
|
43 |
+
"grad_norm": 0.8545279010393898,
|
44 |
+
"learning_rate": 1.3652123889719709e-05,
|
45 |
+
"loss": 1.3838,
|
46 |
+
"step": 3
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.09375,
|
50 |
+
"eval_loss": 1.3825562000274658,
|
51 |
+
"eval_runtime": 27.9018,
|
52 |
+
"eval_samples_per_second": 7.168,
|
53 |
+
"eval_steps_per_second": 0.466,
|
54 |
+
"step": 3
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.125,
|
58 |
+
"grad_norm": 0.7747695318679186,
|
59 |
+
"learning_rate": 1.7227062322935725e-05,
|
60 |
+
"loss": 1.3442,
|
61 |
+
"step": 4
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.125,
|
65 |
+
"eval_loss": 1.3529690504074097,
|
66 |
+
"eval_runtime": 27.9234,
|
67 |
+
"eval_samples_per_second": 7.162,
|
68 |
+
"eval_steps_per_second": 0.466,
|
69 |
+
"step": 4
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.15625,
|
73 |
+
"grad_norm": 0.9223438945487747,
|
74 |
+
"learning_rate": 2e-05,
|
75 |
+
"loss": 1.3265,
|
76 |
+
"step": 5
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.15625,
|
80 |
+
"eval_loss": 1.3111159801483154,
|
81 |
+
"eval_runtime": 27.8183,
|
82 |
+
"eval_samples_per_second": 7.19,
|
83 |
+
"eval_steps_per_second": 0.467,
|
84 |
+
"step": 5
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.1875,
|
88 |
+
"grad_norm": 0.8553066709777654,
|
89 |
+
"learning_rate": 2e-05,
|
90 |
+
"loss": 1.2969,
|
91 |
+
"step": 6
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.1875,
|
95 |
+
"eval_loss": 1.267953634262085,
|
96 |
+
"eval_runtime": 28.5087,
|
97 |
+
"eval_samples_per_second": 7.015,
|
98 |
+
"eval_steps_per_second": 0.456,
|
99 |
+
"step": 6
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.21875,
|
103 |
+
"grad_norm": 0.7513319744508511,
|
104 |
+
"learning_rate": 2e-05,
|
105 |
+
"loss": 1.2643,
|
106 |
+
"step": 7
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.21875,
|
110 |
+
"eval_loss": 1.2324440479278564,
|
111 |
+
"eval_runtime": 28.7026,
|
112 |
+
"eval_samples_per_second": 6.968,
|
113 |
+
"eval_steps_per_second": 0.453,
|
114 |
+
"step": 7
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.25,
|
118 |
+
"grad_norm": 0.5926161530676572,
|
119 |
+
"learning_rate": 2e-05,
|
120 |
+
"loss": 1.2343,
|
121 |
+
"step": 8
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.25,
|
125 |
+
"eval_loss": 1.2082672119140625,
|
126 |
+
"eval_runtime": 28.709,
|
127 |
+
"eval_samples_per_second": 6.966,
|
128 |
+
"eval_steps_per_second": 0.453,
|
129 |
+
"step": 8
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.28125,
|
133 |
+
"grad_norm": 0.45585108261607465,
|
134 |
+
"learning_rate": 2e-05,
|
135 |
+
"loss": 1.2556,
|
136 |
+
"step": 9
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.28125,
|
140 |
+
"eval_loss": 1.1897780895233154,
|
141 |
+
"eval_runtime": 28.5026,
|
142 |
+
"eval_samples_per_second": 7.017,
|
143 |
+
"eval_steps_per_second": 0.456,
|
144 |
+
"step": 9
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.3125,
|
148 |
+
"grad_norm": 0.45306175711380503,
|
149 |
+
"learning_rate": 2e-05,
|
150 |
+
"loss": 1.1941,
|
151 |
+
"step": 10
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.3125,
|
155 |
+
"eval_loss": 1.1719207763671875,
|
156 |
+
"eval_runtime": 28.4252,
|
157 |
+
"eval_samples_per_second": 7.036,
|
158 |
+
"eval_steps_per_second": 0.457,
|
159 |
+
"step": 10
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.34375,
|
163 |
+
"grad_norm": 0.40702053502599356,
|
164 |
+
"learning_rate": 2e-05,
|
165 |
+
"loss": 1.2414,
|
166 |
+
"step": 11
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.34375,
|
170 |
+
"eval_loss": 1.1534627676010132,
|
171 |
+
"eval_runtime": 31.953,
|
172 |
+
"eval_samples_per_second": 6.259,
|
173 |
+
"eval_steps_per_second": 0.407,
|
174 |
+
"step": 11
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.375,
|
178 |
+
"grad_norm": 0.45771435281195333,
|
179 |
+
"learning_rate": 2e-05,
|
180 |
+
"loss": 1.202,
|
181 |
+
"step": 12
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.375,
|
185 |
+
"eval_loss": 1.1343497037887573,
|
186 |
+
"eval_runtime": 31.7064,
|
187 |
+
"eval_samples_per_second": 6.308,
|
188 |
+
"eval_steps_per_second": 0.41,
|
189 |
+
"step": 12
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.40625,
|
193 |
+
"grad_norm": 0.49237132802399297,
|
194 |
+
"learning_rate": 2e-05,
|
195 |
+
"loss": 1.2167,
|
196 |
+
"step": 13
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.40625,
|
200 |
+
"eval_loss": 1.1149284839630127,
|
201 |
+
"eval_runtime": 31.7514,
|
202 |
+
"eval_samples_per_second": 6.299,
|
203 |
+
"eval_steps_per_second": 0.409,
|
204 |
+
"step": 13
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.4375,
|
208 |
+
"grad_norm": 0.4707558788321445,
|
209 |
+
"learning_rate": 2e-05,
|
210 |
+
"loss": 1.0463,
|
211 |
+
"step": 14
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.4375,
|
215 |
+
"eval_loss": 1.0956928730010986,
|
216 |
+
"eval_runtime": 30.7821,
|
217 |
+
"eval_samples_per_second": 6.497,
|
218 |
+
"eval_steps_per_second": 0.422,
|
219 |
+
"step": 14
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.46875,
|
223 |
+
"grad_norm": 0.44161060970171445,
|
224 |
+
"learning_rate": 2e-05,
|
225 |
+
"loss": 1.1615,
|
226 |
+
"step": 15
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.46875,
|
230 |
+
"eval_loss": 1.0776234865188599,
|
231 |
+
"eval_runtime": 30.5336,
|
232 |
+
"eval_samples_per_second": 6.55,
|
233 |
+
"eval_steps_per_second": 0.426,
|
234 |
+
"step": 15
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.5,
|
238 |
+
"grad_norm": 0.43310242386256154,
|
239 |
+
"learning_rate": 2e-05,
|
240 |
+
"loss": 1.0941,
|
241 |
+
"step": 16
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.5,
|
245 |
+
"eval_loss": 1.061128854751587,
|
246 |
+
"eval_runtime": 33.8247,
|
247 |
+
"eval_samples_per_second": 5.913,
|
248 |
+
"eval_steps_per_second": 0.384,
|
249 |
+
"step": 16
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.53125,
|
253 |
+
"grad_norm": 0.3719623439057395,
|
254 |
+
"learning_rate": 2e-05,
|
255 |
+
"loss": 1.0992,
|
256 |
+
"step": 17
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.53125,
|
260 |
+
"eval_loss": 1.0465847253799438,
|
261 |
+
"eval_runtime": 32.7443,
|
262 |
+
"eval_samples_per_second": 6.108,
|
263 |
+
"eval_steps_per_second": 0.397,
|
264 |
+
"step": 17
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.5625,
|
268 |
+
"grad_norm": 0.42266460981580545,
|
269 |
+
"learning_rate": 2e-05,
|
270 |
+
"loss": 1.0904,
|
271 |
+
"step": 18
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.5625,
|
275 |
+
"eval_loss": 1.0327677726745605,
|
276 |
+
"eval_runtime": 32.5697,
|
277 |
+
"eval_samples_per_second": 6.141,
|
278 |
+
"eval_steps_per_second": 0.399,
|
279 |
+
"step": 18
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.59375,
|
283 |
+
"grad_norm": 0.35416098431161336,
|
284 |
+
"learning_rate": 2e-05,
|
285 |
+
"loss": 1.0055,
|
286 |
+
"step": 19
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.59375,
|
290 |
+
"eval_loss": 1.019870638847351,
|
291 |
+
"eval_runtime": 32.6927,
|
292 |
+
"eval_samples_per_second": 6.118,
|
293 |
+
"eval_steps_per_second": 0.398,
|
294 |
+
"step": 19
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.625,
|
298 |
+
"grad_norm": 0.3454390449296124,
|
299 |
+
"learning_rate": 2e-05,
|
300 |
+
"loss": 1.1291,
|
301 |
+
"step": 20
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 0.625,
|
305 |
+
"eval_loss": 1.008323311805725,
|
306 |
+
"eval_runtime": 32.5051,
|
307 |
+
"eval_samples_per_second": 6.153,
|
308 |
+
"eval_steps_per_second": 0.4,
|
309 |
+
"step": 20
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.65625,
|
313 |
+
"grad_norm": 0.291766075949861,
|
314 |
+
"learning_rate": 2e-05,
|
315 |
+
"loss": 1.0363,
|
316 |
+
"step": 21
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.65625,
|
320 |
+
"eval_loss": 0.9983346462249756,
|
321 |
+
"eval_runtime": 36.1543,
|
322 |
+
"eval_samples_per_second": 5.532,
|
323 |
+
"eval_steps_per_second": 0.36,
|
324 |
+
"step": 21
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.6875,
|
328 |
+
"grad_norm": 0.3071914269593122,
|
329 |
+
"learning_rate": 2e-05,
|
330 |
+
"loss": 1.0869,
|
331 |
+
"step": 22
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.6875,
|
335 |
+
"eval_loss": 0.989651083946228,
|
336 |
+
"eval_runtime": 35.9583,
|
337 |
+
"eval_samples_per_second": 5.562,
|
338 |
+
"eval_steps_per_second": 0.362,
|
339 |
+
"step": 22
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.71875,
|
343 |
+
"grad_norm": 0.2642686659789585,
|
344 |
+
"learning_rate": 2e-05,
|
345 |
+
"loss": 1.0706,
|
346 |
+
"step": 23
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.71875,
|
350 |
+
"eval_loss": 0.981977641582489,
|
351 |
+
"eval_runtime": 35.7624,
|
352 |
+
"eval_samples_per_second": 5.592,
|
353 |
+
"eval_steps_per_second": 0.364,
|
354 |
+
"step": 23
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.75,
|
358 |
+
"grad_norm": 0.23789134722319716,
|
359 |
+
"learning_rate": 2e-05,
|
360 |
+
"loss": 1.0669,
|
361 |
+
"step": 24
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.75,
|
365 |
+
"eval_loss": 0.9751532077789307,
|
366 |
+
"eval_runtime": 35.6905,
|
367 |
+
"eval_samples_per_second": 5.604,
|
368 |
+
"eval_steps_per_second": 0.364,
|
369 |
+
"step": 24
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.78125,
|
373 |
+
"grad_norm": 0.26302325685095884,
|
374 |
+
"learning_rate": 2e-05,
|
375 |
+
"loss": 1.0141,
|
376 |
+
"step": 25
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.78125,
|
380 |
+
"eval_loss": 0.9684178233146667,
|
381 |
+
"eval_runtime": 35.4693,
|
382 |
+
"eval_samples_per_second": 5.639,
|
383 |
+
"eval_steps_per_second": 0.367,
|
384 |
+
"step": 25
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.8125,
|
388 |
+
"grad_norm": 0.2406662725995088,
|
389 |
+
"learning_rate": 2e-05,
|
390 |
+
"loss": 1.0381,
|
391 |
+
"step": 26
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.8125,
|
395 |
+
"eval_loss": 0.9618947505950928,
|
396 |
+
"eval_runtime": 37.5325,
|
397 |
+
"eval_samples_per_second": 5.329,
|
398 |
+
"eval_steps_per_second": 0.346,
|
399 |
+
"step": 26
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.84375,
|
403 |
+
"grad_norm": 0.27899113172875245,
|
404 |
+
"learning_rate": 2e-05,
|
405 |
+
"loss": 0.9693,
|
406 |
+
"step": 27
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 0.84375,
|
410 |
+
"eval_loss": 0.9552007913589478,
|
411 |
+
"eval_runtime": 37.4006,
|
412 |
+
"eval_samples_per_second": 5.348,
|
413 |
+
"eval_steps_per_second": 0.348,
|
414 |
+
"step": 27
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.875,
|
418 |
+
"grad_norm": 0.29303174930955905,
|
419 |
+
"learning_rate": 2e-05,
|
420 |
+
"loss": 0.9841,
|
421 |
+
"step": 28
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.875,
|
425 |
+
"eval_loss": 0.9481881856918335,
|
426 |
+
"eval_runtime": 37.7821,
|
427 |
+
"eval_samples_per_second": 5.294,
|
428 |
+
"eval_steps_per_second": 0.344,
|
429 |
+
"step": 28
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.90625,
|
433 |
+
"grad_norm": 0.22138226087715307,
|
434 |
+
"learning_rate": 2e-05,
|
435 |
+
"loss": 0.9959,
|
436 |
+
"step": 29
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.90625,
|
440 |
+
"eval_loss": 0.9415397644042969,
|
441 |
+
"eval_runtime": 37.9058,
|
442 |
+
"eval_samples_per_second": 5.276,
|
443 |
+
"eval_steps_per_second": 0.343,
|
444 |
+
"step": 29
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.9375,
|
448 |
+
"grad_norm": 0.23456101188675513,
|
449 |
+
"learning_rate": 2e-05,
|
450 |
+
"loss": 1.0351,
|
451 |
+
"step": 30
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.9375,
|
455 |
+
"eval_loss": 0.9354143738746643,
|
456 |
+
"eval_runtime": 37.9727,
|
457 |
+
"eval_samples_per_second": 5.267,
|
458 |
+
"eval_steps_per_second": 0.342,
|
459 |
+
"step": 30
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.96875,
|
463 |
+
"grad_norm": 0.2594838155429295,
|
464 |
+
"learning_rate": 2e-05,
|
465 |
+
"loss": 0.8741,
|
466 |
+
"step": 31
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.96875,
|
470 |
+
"eval_loss": 0.9291737079620361,
|
471 |
+
"eval_runtime": 37.081,
|
472 |
+
"eval_samples_per_second": 5.394,
|
473 |
+
"eval_steps_per_second": 0.351,
|
474 |
+
"step": 31
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 1.0,
|
478 |
+
"grad_norm": 0.2404582058613114,
|
479 |
+
"learning_rate": 2e-05,
|
480 |
+
"loss": 0.9814,
|
481 |
+
"step": 32
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 1.0,
|
485 |
+
"eval_loss": 0.9231625199317932,
|
486 |
+
"eval_runtime": 37.0946,
|
487 |
+
"eval_samples_per_second": 5.392,
|
488 |
+
"eval_steps_per_second": 0.35,
|
489 |
+
"step": 32
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.03125,
|
493 |
+
"grad_norm": 0.26862391186560797,
|
494 |
+
"learning_rate": 2e-05,
|
495 |
+
"loss": 1.0241,
|
496 |
+
"step": 33
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 1.03125,
|
500 |
+
"eval_loss": 0.917277991771698,
|
501 |
+
"eval_runtime": 37.1872,
|
502 |
+
"eval_samples_per_second": 5.378,
|
503 |
+
"eval_steps_per_second": 0.35,
|
504 |
+
"step": 33
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 1.0625,
|
508 |
+
"grad_norm": 0.24997341491489666,
|
509 |
+
"learning_rate": 2e-05,
|
510 |
+
"loss": 1.0296,
|
511 |
+
"step": 34
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 1.0625,
|
515 |
+
"eval_loss": 0.9116549491882324,
|
516 |
+
"eval_runtime": 30.7053,
|
517 |
+
"eval_samples_per_second": 6.514,
|
518 |
+
"eval_steps_per_second": 0.423,
|
519 |
+
"step": 34
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.09375,
|
523 |
+
"grad_norm": 0.22755062908849677,
|
524 |
+
"learning_rate": 2e-05,
|
525 |
+
"loss": 1.047,
|
526 |
+
"step": 35
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 1.09375,
|
530 |
+
"eval_loss": 0.9061525464057922,
|
531 |
+
"eval_runtime": 30.5238,
|
532 |
+
"eval_samples_per_second": 6.552,
|
533 |
+
"eval_steps_per_second": 0.426,
|
534 |
+
"step": 35
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.125,
|
538 |
+
"grad_norm": 0.2478793998097894,
|
539 |
+
"learning_rate": 2e-05,
|
540 |
+
"loss": 1.0071,
|
541 |
+
"step": 36
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.125,
|
545 |
+
"eval_loss": 0.9007319808006287,
|
546 |
+
"eval_runtime": 30.4573,
|
547 |
+
"eval_samples_per_second": 6.567,
|
548 |
+
"eval_steps_per_second": 0.427,
|
549 |
+
"step": 36
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.15625,
|
553 |
+
"grad_norm": 0.2319702521014333,
|
554 |
+
"learning_rate": 2e-05,
|
555 |
+
"loss": 0.9517,
|
556 |
+
"step": 37
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 1.15625,
|
560 |
+
"eval_loss": 0.8955077528953552,
|
561 |
+
"eval_runtime": 30.6396,
|
562 |
+
"eval_samples_per_second": 6.528,
|
563 |
+
"eval_steps_per_second": 0.424,
|
564 |
+
"step": 37
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 1.1875,
|
568 |
+
"grad_norm": 0.26929965642782505,
|
569 |
+
"learning_rate": 2e-05,
|
570 |
+
"loss": 0.9638,
|
571 |
+
"step": 38
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 1.1875,
|
575 |
+
"eval_loss": 0.8906582593917847,
|
576 |
+
"eval_runtime": 30.5706,
|
577 |
+
"eval_samples_per_second": 6.542,
|
578 |
+
"eval_steps_per_second": 0.425,
|
579 |
+
"step": 38
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.21875,
|
583 |
+
"grad_norm": 0.25494286133089294,
|
584 |
+
"learning_rate": 2e-05,
|
585 |
+
"loss": 0.9922,
|
586 |
+
"step": 39
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 1.21875,
|
590 |
+
"eval_loss": 0.8858879804611206,
|
591 |
+
"eval_runtime": 30.2267,
|
592 |
+
"eval_samples_per_second": 6.617,
|
593 |
+
"eval_steps_per_second": 0.43,
|
594 |
+
"step": 39
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 1.25,
|
598 |
+
"grad_norm": 0.2468866713698415,
|
599 |
+
"learning_rate": 2e-05,
|
600 |
+
"loss": 0.9873,
|
601 |
+
"step": 40
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 1.25,
|
605 |
+
"eval_loss": 0.8811590671539307,
|
606 |
+
"eval_runtime": 30.1065,
|
607 |
+
"eval_samples_per_second": 6.643,
|
608 |
+
"eval_steps_per_second": 0.432,
|
609 |
+
"step": 40
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.28125,
|
613 |
+
"grad_norm": 0.2460619663724958,
|
614 |
+
"learning_rate": 2e-05,
|
615 |
+
"loss": 0.9608,
|
616 |
+
"step": 41
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 1.28125,
|
620 |
+
"eval_loss": 0.876426637172699,
|
621 |
+
"eval_runtime": 30.2618,
|
622 |
+
"eval_samples_per_second": 6.609,
|
623 |
+
"eval_steps_per_second": 0.43,
|
624 |
+
"step": 41
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 1.3125,
|
628 |
+
"grad_norm": 0.244111044045335,
|
629 |
+
"learning_rate": 2e-05,
|
630 |
+
"loss": 0.9496,
|
631 |
+
"step": 42
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.3125,
|
635 |
+
"eval_loss": 0.8720347881317139,
|
636 |
+
"eval_runtime": 30.2637,
|
637 |
+
"eval_samples_per_second": 6.609,
|
638 |
+
"eval_steps_per_second": 0.43,
|
639 |
+
"step": 42
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.34375,
|
643 |
+
"grad_norm": 0.24263485999072093,
|
644 |
+
"learning_rate": 2e-05,
|
645 |
+
"loss": 0.9076,
|
646 |
+
"step": 43
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.34375,
|
650 |
+
"eval_loss": 0.8677232265472412,
|
651 |
+
"eval_runtime": 30.0588,
|
652 |
+
"eval_samples_per_second": 6.654,
|
653 |
+
"eval_steps_per_second": 0.432,
|
654 |
+
"step": 43
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 1.375,
|
658 |
+
"grad_norm": 0.2549786588443146,
|
659 |
+
"learning_rate": 2e-05,
|
660 |
+
"loss": 0.9291,
|
661 |
+
"step": 44
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.375,
|
665 |
+
"eval_loss": 0.864047110080719,
|
666 |
+
"eval_runtime": 30.3833,
|
667 |
+
"eval_samples_per_second": 6.583,
|
668 |
+
"eval_steps_per_second": 0.428,
|
669 |
+
"step": 44
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.40625,
|
673 |
+
"grad_norm": 0.27020952324959413,
|
674 |
+
"learning_rate": 2e-05,
|
675 |
+
"loss": 0.9111,
|
676 |
+
"step": 45
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 1.40625,
|
680 |
+
"eval_loss": 0.8608524799346924,
|
681 |
+
"eval_runtime": 30.284,
|
682 |
+
"eval_samples_per_second": 6.604,
|
683 |
+
"eval_steps_per_second": 0.429,
|
684 |
+
"step": 45
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 1.4375,
|
688 |
+
"grad_norm": 0.24108750741309573,
|
689 |
+
"learning_rate": 2e-05,
|
690 |
+
"loss": 0.8363,
|
691 |
+
"step": 46
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 1.4375,
|
695 |
+
"eval_loss": 0.8525222539901733,
|
696 |
+
"eval_runtime": 51.3231,
|
697 |
+
"eval_samples_per_second": 3.897,
|
698 |
+
"eval_steps_per_second": 0.487,
|
699 |
+
"step": 46
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.46875,
|
703 |
+
"grad_norm": 0.23963570627035977,
|
704 |
+
"learning_rate": 2e-05,
|
705 |
+
"loss": 0.9776,
|
706 |
+
"step": 47
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 1.46875,
|
710 |
+
"eval_loss": 0.8498736619949341,
|
711 |
+
"eval_runtime": 43.9039,
|
712 |
+
"eval_samples_per_second": 4.555,
|
713 |
+
"eval_steps_per_second": 0.569,
|
714 |
+
"step": 47
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 1.5,
|
718 |
+
"grad_norm": 0.2738559790360609,
|
719 |
+
"learning_rate": 2e-05,
|
720 |
+
"loss": 0.9075,
|
721 |
+
"step": 48
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.5,
|
725 |
+
"eval_loss": 0.846975564956665,
|
726 |
+
"eval_runtime": 43.6943,
|
727 |
+
"eval_samples_per_second": 4.577,
|
728 |
+
"eval_steps_per_second": 0.572,
|
729 |
+
"step": 48
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.53125,
|
733 |
+
"grad_norm": 0.2516715524185528,
|
734 |
+
"learning_rate": 2e-05,
|
735 |
+
"loss": 0.9256,
|
736 |
+
"step": 49
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 1.53125,
|
740 |
+
"eval_loss": 0.8441421985626221,
|
741 |
+
"eval_runtime": 44.0977,
|
742 |
+
"eval_samples_per_second": 4.535,
|
743 |
+
"eval_steps_per_second": 0.567,
|
744 |
+
"step": 49
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.5625,
|
748 |
+
"grad_norm": 0.25797542568004944,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.9168,
|
751 |
+
"step": 50
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.5625,
|
755 |
+
"eval_loss": 0.8408769369125366,
|
756 |
+
"eval_runtime": 45.4442,
|
757 |
+
"eval_samples_per_second": 4.401,
|
758 |
+
"eval_steps_per_second": 0.55,
|
759 |
+
"step": 50
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.59375,
|
763 |
+
"grad_norm": 0.24530872900913284,
|
764 |
+
"learning_rate": 2e-05,
|
765 |
+
"loss": 0.8547,
|
766 |
+
"step": 51
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 1.59375,
|
770 |
+
"eval_loss": 0.8373726010322571,
|
771 |
+
"eval_runtime": 44.6363,
|
772 |
+
"eval_samples_per_second": 4.481,
|
773 |
+
"eval_steps_per_second": 0.56,
|
774 |
+
"step": 51
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 1.625,
|
778 |
+
"grad_norm": 0.2549609506617865,
|
779 |
+
"learning_rate": 2e-05,
|
780 |
+
"loss": 0.979,
|
781 |
+
"step": 52
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.625,
|
785 |
+
"eval_loss": 0.8340890407562256,
|
786 |
+
"eval_runtime": 45.991,
|
787 |
+
"eval_samples_per_second": 4.349,
|
788 |
+
"eval_steps_per_second": 0.544,
|
789 |
+
"step": 52
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.65625,
|
793 |
+
"grad_norm": 0.24114496664848603,
|
794 |
+
"learning_rate": 2e-05,
|
795 |
+
"loss": 0.9196,
|
796 |
+
"step": 53
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 1.65625,
|
800 |
+
"eval_loss": 0.8311529755592346,
|
801 |
+
"eval_runtime": 46.0654,
|
802 |
+
"eval_samples_per_second": 4.342,
|
803 |
+
"eval_steps_per_second": 0.543,
|
804 |
+
"step": 53
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 1.6875,
|
808 |
+
"grad_norm": 0.29287872202759435,
|
809 |
+
"learning_rate": 2e-05,
|
810 |
+
"loss": 0.967,
|
811 |
+
"step": 54
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.6875,
|
815 |
+
"eval_loss": 0.8281388282775879,
|
816 |
+
"eval_runtime": 46.0396,
|
817 |
+
"eval_samples_per_second": 4.344,
|
818 |
+
"eval_steps_per_second": 0.543,
|
819 |
+
"step": 54
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.71875,
|
823 |
+
"grad_norm": 0.2620663114325604,
|
824 |
+
"learning_rate": 2e-05,
|
825 |
+
"loss": 0.9576,
|
826 |
+
"step": 55
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 1.71875,
|
830 |
+
"eval_loss": 0.8252360820770264,
|
831 |
+
"eval_runtime": 44.8935,
|
832 |
+
"eval_samples_per_second": 4.455,
|
833 |
+
"eval_steps_per_second": 0.557,
|
834 |
+
"step": 55
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 1.75,
|
838 |
+
"grad_norm": 0.24813796796229484,
|
839 |
+
"learning_rate": 2e-05,
|
840 |
+
"loss": 0.9652,
|
841 |
+
"step": 56
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.75,
|
845 |
+
"eval_loss": 0.8228487968444824,
|
846 |
+
"eval_runtime": 45.9424,
|
847 |
+
"eval_samples_per_second": 4.353,
|
848 |
+
"eval_steps_per_second": 0.544,
|
849 |
+
"step": 56
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.78125,
|
853 |
+
"grad_norm": 0.25644243214043555,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.8938,
|
856 |
+
"step": 57
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.78125,
|
860 |
+
"eval_loss": 0.8202834129333496,
|
861 |
+
"eval_runtime": 45.4583,
|
862 |
+
"eval_samples_per_second": 4.4,
|
863 |
+
"eval_steps_per_second": 0.55,
|
864 |
+
"step": 57
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 1.8125,
|
868 |
+
"grad_norm": 0.24429328723074778,
|
869 |
+
"learning_rate": 2e-05,
|
870 |
+
"loss": 0.9373,
|
871 |
+
"step": 58
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 1.8125,
|
875 |
+
"eval_loss": 0.8179032802581787,
|
876 |
+
"eval_runtime": 45.7499,
|
877 |
+
"eval_samples_per_second": 4.372,
|
878 |
+
"eval_steps_per_second": 0.546,
|
879 |
+
"step": 58
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 1.84375,
|
883 |
+
"grad_norm": 0.26226013327841075,
|
884 |
+
"learning_rate": 2e-05,
|
885 |
+
"loss": 0.8474,
|
886 |
+
"step": 59
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 1.84375,
|
890 |
+
"eval_loss": 0.8154602646827698,
|
891 |
+
"eval_runtime": 46.1391,
|
892 |
+
"eval_samples_per_second": 4.335,
|
893 |
+
"eval_steps_per_second": 0.542,
|
894 |
+
"step": 59
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 1.875,
|
898 |
+
"grad_norm": 0.2581666046262149,
|
899 |
+
"learning_rate": 2e-05,
|
900 |
+
"loss": 0.8517,
|
901 |
+
"step": 60
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.875,
|
905 |
+
"eval_loss": 0.812771737575531,
|
906 |
+
"eval_runtime": 45.5621,
|
907 |
+
"eval_samples_per_second": 4.39,
|
908 |
+
"eval_steps_per_second": 0.549,
|
909 |
+
"step": 60
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 1.90625,
|
913 |
+
"grad_norm": 0.2593197258112398,
|
914 |
+
"learning_rate": 2e-05,
|
915 |
+
"loss": 0.9011,
|
916 |
+
"step": 61
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 1.90625,
|
920 |
+
"eval_loss": 0.810187816619873,
|
921 |
+
"eval_runtime": 46.0597,
|
922 |
+
"eval_samples_per_second": 4.342,
|
923 |
+
"eval_steps_per_second": 0.543,
|
924 |
+
"step": 61
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 1.9375,
|
928 |
+
"grad_norm": 0.2899895571193183,
|
929 |
+
"learning_rate": 2e-05,
|
930 |
+
"loss": 0.9277,
|
931 |
+
"step": 62
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 1.9375,
|
935 |
+
"eval_loss": 0.8083757758140564,
|
936 |
+
"eval_runtime": 45.8079,
|
937 |
+
"eval_samples_per_second": 4.366,
|
938 |
+
"eval_steps_per_second": 0.546,
|
939 |
+
"step": 62
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.96875,
|
943 |
+
"grad_norm": 0.2759215195414453,
|
944 |
+
"learning_rate": 2e-05,
|
945 |
+
"loss": 0.772,
|
946 |
+
"step": 63
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.96875,
|
950 |
+
"eval_loss": 0.8061204552650452,
|
951 |
+
"eval_runtime": 47.3286,
|
952 |
+
"eval_samples_per_second": 4.226,
|
953 |
+
"eval_steps_per_second": 0.528,
|
954 |
+
"step": 63
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 2.0,
|
958 |
+
"grad_norm": 0.27248680511516205,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.874,
|
961 |
+
"step": 64
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 2.0,
|
965 |
+
"eval_loss": 0.8037504553794861,
|
966 |
+
"eval_runtime": 46.1177,
|
967 |
+
"eval_samples_per_second": 4.337,
|
968 |
+
"eval_steps_per_second": 0.542,
|
969 |
+
"step": 64
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 2.03125,
|
973 |
+
"grad_norm": 0.3116755816558186,
|
974 |
+
"learning_rate": 2e-05,
|
975 |
+
"loss": 0.8647,
|
976 |
+
"step": 65
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 2.03125,
|
980 |
+
"eval_loss": 0.8007115125656128,
|
981 |
+
"eval_runtime": 46.1583,
|
982 |
+
"eval_samples_per_second": 4.333,
|
983 |
+
"eval_steps_per_second": 0.542,
|
984 |
+
"step": 65
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 2.0625,
|
988 |
+
"grad_norm": 0.273032515206887,
|
989 |
+
"learning_rate": 2e-05,
|
990 |
+
"loss": 0.8862,
|
991 |
+
"step": 66
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 2.0625,
|
995 |
+
"eval_loss": 0.7983976006507874,
|
996 |
+
"eval_runtime": 47.3469,
|
997 |
+
"eval_samples_per_second": 4.224,
|
998 |
+
"eval_steps_per_second": 0.528,
|
999 |
+
"step": 66
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 2.09375,
|
1003 |
+
"grad_norm": 0.2925240383907651,
|
1004 |
+
"learning_rate": 2e-05,
|
1005 |
+
"loss": 0.8617,
|
1006 |
+
"step": 67
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 2.09375,
|
1010 |
+
"eval_loss": 0.7959001064300537,
|
1011 |
+
"eval_runtime": 47.9208,
|
1012 |
+
"eval_samples_per_second": 4.174,
|
1013 |
+
"eval_steps_per_second": 0.522,
|
1014 |
+
"step": 67
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 2.125,
|
1018 |
+
"grad_norm": 0.25775933439981163,
|
1019 |
+
"learning_rate": 2e-05,
|
1020 |
+
"loss": 0.9269,
|
1021 |
+
"step": 68
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 2.125,
|
1025 |
+
"eval_loss": 0.7938115000724792,
|
1026 |
+
"eval_runtime": 47.8909,
|
1027 |
+
"eval_samples_per_second": 4.176,
|
1028 |
+
"eval_steps_per_second": 0.522,
|
1029 |
+
"step": 68
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 2.15625,
|
1033 |
+
"grad_norm": 0.2669684013704678,
|
1034 |
+
"learning_rate": 2e-05,
|
1035 |
+
"loss": 0.8607,
|
1036 |
+
"step": 69
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 2.15625,
|
1040 |
+
"eval_loss": 0.7918573617935181,
|
1041 |
+
"eval_runtime": 47.39,
|
1042 |
+
"eval_samples_per_second": 4.22,
|
1043 |
+
"eval_steps_per_second": 0.528,
|
1044 |
+
"step": 69
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 2.1875,
|
1048 |
+
"grad_norm": 0.312578346444957,
|
1049 |
+
"learning_rate": 2e-05,
|
1050 |
+
"loss": 0.8086,
|
1051 |
+
"step": 70
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 2.1875,
|
1055 |
+
"eval_loss": 0.7894810438156128,
|
1056 |
+
"eval_runtime": 46.2927,
|
1057 |
+
"eval_samples_per_second": 4.32,
|
1058 |
+
"eval_steps_per_second": 0.54,
|
1059 |
+
"step": 70
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.21875,
|
1063 |
+
"grad_norm": 0.25622754870894693,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.8945,
|
1066 |
+
"step": 71
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.21875,
|
1070 |
+
"eval_loss": 0.7875316739082336,
|
1071 |
+
"eval_runtime": 45.7617,
|
1072 |
+
"eval_samples_per_second": 4.37,
|
1073 |
+
"eval_steps_per_second": 0.546,
|
1074 |
+
"step": 71
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 2.25,
|
1078 |
+
"grad_norm": 0.27025767580736354,
|
1079 |
+
"learning_rate": 2e-05,
|
1080 |
+
"loss": 0.815,
|
1081 |
+
"step": 72
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 2.25,
|
1085 |
+
"eval_loss": 0.7858334183692932,
|
1086 |
+
"eval_runtime": 46.2427,
|
1087 |
+
"eval_samples_per_second": 4.325,
|
1088 |
+
"eval_steps_per_second": 0.541,
|
1089 |
+
"step": 72
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 2.28125,
|
1093 |
+
"grad_norm": 0.3110479115695806,
|
1094 |
+
"learning_rate": 2e-05,
|
1095 |
+
"loss": 0.8621,
|
1096 |
+
"step": 73
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 2.28125,
|
1100 |
+
"eval_loss": 0.7841551303863525,
|
1101 |
+
"eval_runtime": 46.5372,
|
1102 |
+
"eval_samples_per_second": 4.298,
|
1103 |
+
"eval_steps_per_second": 0.537,
|
1104 |
+
"step": 73
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 2.3125,
|
1108 |
+
"grad_norm": 0.26061305588172545,
|
1109 |
+
"learning_rate": 2e-05,
|
1110 |
+
"loss": 0.8622,
|
1111 |
+
"step": 74
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 2.3125,
|
1115 |
+
"eval_loss": 0.7826495170593262,
|
1116 |
+
"eval_runtime": 46.1361,
|
1117 |
+
"eval_samples_per_second": 4.335,
|
1118 |
+
"eval_steps_per_second": 0.542,
|
1119 |
+
"step": 74
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 2.34375,
|
1123 |
+
"grad_norm": 0.27448719719872205,
|
1124 |
+
"learning_rate": 2e-05,
|
1125 |
+
"loss": 0.9118,
|
1126 |
+
"step": 75
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 2.34375,
|
1130 |
+
"eval_loss": 0.7811364531517029,
|
1131 |
+
"eval_runtime": 47.6194,
|
1132 |
+
"eval_samples_per_second": 4.2,
|
1133 |
+
"eval_steps_per_second": 0.525,
|
1134 |
+
"step": 75
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 2.375,
|
1138 |
+
"grad_norm": 0.27078145092639194,
|
1139 |
+
"learning_rate": 2e-05,
|
1140 |
+
"loss": 0.8256,
|
1141 |
+
"step": 76
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 2.375,
|
1145 |
+
"eval_loss": 0.779961109161377,
|
1146 |
+
"eval_runtime": 46.0097,
|
1147 |
+
"eval_samples_per_second": 4.347,
|
1148 |
+
"eval_steps_per_second": 0.543,
|
1149 |
+
"step": 76
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 2.40625,
|
1153 |
+
"grad_norm": 0.2634646272324293,
|
1154 |
+
"learning_rate": 2e-05,
|
1155 |
+
"loss": 0.8774,
|
1156 |
+
"step": 77
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 2.40625,
|
1160 |
+
"eval_loss": 0.7788712978363037,
|
1161 |
+
"eval_runtime": 46.2712,
|
1162 |
+
"eval_samples_per_second": 4.322,
|
1163 |
+
"eval_steps_per_second": 0.54,
|
1164 |
+
"step": 77
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.4375,
|
1168 |
+
"grad_norm": 0.3101668401682978,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.8769,
|
1171 |
+
"step": 78
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.4375,
|
1175 |
+
"eval_loss": 0.7776928544044495,
|
1176 |
+
"eval_runtime": 46.3791,
|
1177 |
+
"eval_samples_per_second": 4.312,
|
1178 |
+
"eval_steps_per_second": 0.539,
|
1179 |
+
"step": 78
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 2.46875,
|
1183 |
+
"grad_norm": 0.28798302574187284,
|
1184 |
+
"learning_rate": 2e-05,
|
1185 |
+
"loss": 0.8765,
|
1186 |
+
"step": 79
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 2.46875,
|
1190 |
+
"eval_loss": 0.7773044109344482,
|
1191 |
+
"eval_runtime": 43.9352,
|
1192 |
+
"eval_samples_per_second": 4.552,
|
1193 |
+
"eval_steps_per_second": 0.569,
|
1194 |
+
"step": 79
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 2.5,
|
1198 |
+
"grad_norm": 0.3349887736240022,
|
1199 |
+
"learning_rate": 2e-05,
|
1200 |
+
"loss": 0.9202,
|
1201 |
+
"step": 80
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 2.5,
|
1205 |
+
"eval_loss": 0.7766420245170593,
|
1206 |
+
"eval_runtime": 44.0118,
|
1207 |
+
"eval_samples_per_second": 4.544,
|
1208 |
+
"eval_steps_per_second": 0.568,
|
1209 |
+
"step": 80
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 2.53125,
|
1213 |
+
"grad_norm": 0.3272989979927921,
|
1214 |
+
"learning_rate": 2e-05,
|
1215 |
+
"loss": 0.8496,
|
1216 |
+
"step": 81
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 2.53125,
|
1220 |
+
"eval_loss": 0.7754170894622803,
|
1221 |
+
"eval_runtime": 44.5079,
|
1222 |
+
"eval_samples_per_second": 4.494,
|
1223 |
+
"eval_steps_per_second": 0.562,
|
1224 |
+
"step": 81
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 2.5625,
|
1228 |
+
"grad_norm": 0.2937867633662159,
|
1229 |
+
"learning_rate": 2e-05,
|
1230 |
+
"loss": 0.9088,
|
1231 |
+
"step": 82
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 2.5625,
|
1235 |
+
"eval_loss": 0.7740327715873718,
|
1236 |
+
"eval_runtime": 43.7759,
|
1237 |
+
"eval_samples_per_second": 4.569,
|
1238 |
+
"eval_steps_per_second": 0.571,
|
1239 |
+
"step": 82
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 2.59375,
|
1243 |
+
"grad_norm": 0.3001827875228488,
|
1244 |
+
"learning_rate": 2e-05,
|
1245 |
+
"loss": 0.8514,
|
1246 |
+
"step": 83
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 2.59375,
|
1250 |
+
"eval_loss": 0.7725099921226501,
|
1251 |
+
"eval_runtime": 43.9246,
|
1252 |
+
"eval_samples_per_second": 4.553,
|
1253 |
+
"eval_steps_per_second": 0.569,
|
1254 |
+
"step": 83
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 2.625,
|
1258 |
+
"grad_norm": 0.3153202233063334,
|
1259 |
+
"learning_rate": 2e-05,
|
1260 |
+
"loss": 0.8232,
|
1261 |
+
"step": 84
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"epoch": 2.625,
|
1265 |
+
"eval_loss": 0.7707765698432922,
|
1266 |
+
"eval_runtime": 45.7981,
|
1267 |
+
"eval_samples_per_second": 4.367,
|
1268 |
+
"eval_steps_per_second": 0.546,
|
1269 |
+
"step": 84
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.65625,
|
1273 |
+
"grad_norm": 0.3084122812305825,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.7899,
|
1276 |
+
"step": 85
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.65625,
|
1280 |
+
"eval_loss": 0.7689283490180969,
|
1281 |
+
"eval_runtime": 43.8712,
|
1282 |
+
"eval_samples_per_second": 4.559,
|
1283 |
+
"eval_steps_per_second": 0.57,
|
1284 |
+
"step": 85
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 2.6875,
|
1288 |
+
"grad_norm": 0.34994590801092706,
|
1289 |
+
"learning_rate": 2e-05,
|
1290 |
+
"loss": 0.8186,
|
1291 |
+
"step": 86
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 2.6875,
|
1295 |
+
"eval_loss": 0.7668275237083435,
|
1296 |
+
"eval_runtime": 44.0477,
|
1297 |
+
"eval_samples_per_second": 4.541,
|
1298 |
+
"eval_steps_per_second": 0.568,
|
1299 |
+
"step": 86
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 2.71875,
|
1303 |
+
"grad_norm": 0.33626535961990944,
|
1304 |
+
"learning_rate": 2e-05,
|
1305 |
+
"loss": 0.8439,
|
1306 |
+
"step": 87
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 2.71875,
|
1310 |
+
"eval_loss": 0.7653672695159912,
|
1311 |
+
"eval_runtime": 43.9923,
|
1312 |
+
"eval_samples_per_second": 4.546,
|
1313 |
+
"eval_steps_per_second": 0.568,
|
1314 |
+
"step": 87
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 2.75,
|
1318 |
+
"grad_norm": 0.33991458856080364,
|
1319 |
+
"learning_rate": 2e-05,
|
1320 |
+
"loss": 0.9309,
|
1321 |
+
"step": 88
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 2.75,
|
1325 |
+
"eval_loss": 0.7641142010688782,
|
1326 |
+
"eval_runtime": 44.018,
|
1327 |
+
"eval_samples_per_second": 4.544,
|
1328 |
+
"eval_steps_per_second": 0.568,
|
1329 |
+
"step": 88
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 2.78125,
|
1333 |
+
"grad_norm": 0.3212547051979476,
|
1334 |
+
"learning_rate": 2e-05,
|
1335 |
+
"loss": 0.8262,
|
1336 |
+
"step": 89
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 2.78125,
|
1340 |
+
"eval_loss": 0.763224720954895,
|
1341 |
+
"eval_runtime": 43.7722,
|
1342 |
+
"eval_samples_per_second": 4.569,
|
1343 |
+
"eval_steps_per_second": 0.571,
|
1344 |
+
"step": 89
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 2.8125,
|
1348 |
+
"grad_norm": 0.335120027091876,
|
1349 |
+
"learning_rate": 2e-05,
|
1350 |
+
"loss": 0.8795,
|
1351 |
+
"step": 90
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 2.8125,
|
1355 |
+
"eval_loss": 0.7624655365943909,
|
1356 |
+
"eval_runtime": 44.1972,
|
1357 |
+
"eval_samples_per_second": 4.525,
|
1358 |
+
"eval_steps_per_second": 0.566,
|
1359 |
+
"step": 90
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 2.84375,
|
1363 |
+
"grad_norm": 0.33822766071160937,
|
1364 |
+
"learning_rate": 2e-05,
|
1365 |
+
"loss": 0.7798,
|
1366 |
+
"step": 91
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 2.84375,
|
1370 |
+
"eval_loss": 0.761708676815033,
|
1371 |
+
"eval_runtime": 43.8244,
|
1372 |
+
"eval_samples_per_second": 4.564,
|
1373 |
+
"eval_steps_per_second": 0.57,
|
1374 |
+
"step": 91
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.875,
|
1378 |
+
"grad_norm": 0.33505853726890483,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.8715,
|
1381 |
+
"step": 92
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.875,
|
1385 |
+
"eval_loss": 0.7611495852470398,
|
1386 |
+
"eval_runtime": 43.7833,
|
1387 |
+
"eval_samples_per_second": 4.568,
|
1388 |
+
"eval_steps_per_second": 0.571,
|
1389 |
+
"step": 92
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 2.90625,
|
1393 |
+
"grad_norm": 0.3126942865091584,
|
1394 |
+
"learning_rate": 2e-05,
|
1395 |
+
"loss": 0.8102,
|
1396 |
+
"step": 93
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 2.90625,
|
1400 |
+
"eval_loss": 0.7608107924461365,
|
1401 |
+
"eval_runtime": 44.0119,
|
1402 |
+
"eval_samples_per_second": 4.544,
|
1403 |
+
"eval_steps_per_second": 0.568,
|
1404 |
+
"step": 93
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 2.9375,
|
1408 |
+
"grad_norm": 0.3594152593867412,
|
1409 |
+
"learning_rate": 2e-05,
|
1410 |
+
"loss": 0.8871,
|
1411 |
+
"step": 94
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 2.9375,
|
1415 |
+
"eval_loss": 0.7598913311958313,
|
1416 |
+
"eval_runtime": 43.8956,
|
1417 |
+
"eval_samples_per_second": 4.556,
|
1418 |
+
"eval_steps_per_second": 0.57,
|
1419 |
+
"step": 94
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 2.96875,
|
1423 |
+
"grad_norm": 0.3161380007473764,
|
1424 |
+
"learning_rate": 2e-05,
|
1425 |
+
"loss": 0.8278,
|
1426 |
+
"step": 95
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 2.96875,
|
1430 |
+
"eval_loss": 0.7596660852432251,
|
1431 |
+
"eval_runtime": 44.0687,
|
1432 |
+
"eval_samples_per_second": 4.538,
|
1433 |
+
"eval_steps_per_second": 0.567,
|
1434 |
+
"step": 95
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 3.0,
|
1438 |
+
"grad_norm": 0.3922097294803287,
|
1439 |
+
"learning_rate": 2e-05,
|
1440 |
+
"loss": 0.7988,
|
1441 |
+
"step": 96
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 3.0,
|
1445 |
+
"eval_loss": 0.7576884627342224,
|
1446 |
+
"eval_runtime": 44.1881,
|
1447 |
+
"eval_samples_per_second": 4.526,
|
1448 |
+
"eval_steps_per_second": 0.566,
|
1449 |
+
"step": 96
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 3.03125,
|
1453 |
+
"grad_norm": 0.372234038126675,
|
1454 |
+
"learning_rate": 2e-05,
|
1455 |
+
"loss": 0.7558,
|
1456 |
+
"step": 97
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 3.03125,
|
1460 |
+
"eval_loss": 0.7546435594558716,
|
1461 |
+
"eval_runtime": 43.8881,
|
1462 |
+
"eval_samples_per_second": 4.557,
|
1463 |
+
"eval_steps_per_second": 0.57,
|
1464 |
+
"step": 97
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 3.0625,
|
1468 |
+
"grad_norm": 0.3249396043376576,
|
1469 |
+
"learning_rate": 2e-05,
|
1470 |
+
"loss": 0.8422,
|
1471 |
+
"step": 98
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 3.0625,
|
1475 |
+
"eval_loss": 0.7515354752540588,
|
1476 |
+
"eval_runtime": 44.5887,
|
1477 |
+
"eval_samples_per_second": 4.485,
|
1478 |
+
"eval_steps_per_second": 0.561,
|
1479 |
+
"step": 98
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 3.09375,
|
1483 |
+
"grad_norm": 0.3194387311297811,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.8059,
|
1486 |
+
"step": 99
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 3.09375,
|
1490 |
+
"eval_loss": 0.7486842274665833,
|
1491 |
+
"eval_runtime": 44.0967,
|
1492 |
+
"eval_samples_per_second": 4.535,
|
1493 |
+
"eval_steps_per_second": 0.567,
|
1494 |
+
"step": 99
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 3.125,
|
1498 |
+
"grad_norm": 0.3434194037136213,
|
1499 |
+
"learning_rate": 2e-05,
|
1500 |
+
"loss": 0.8341,
|
1501 |
+
"step": 100
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 3.125,
|
1505 |
+
"eval_loss": 0.7464652061462402,
|
1506 |
+
"eval_runtime": 44.0666,
|
1507 |
+
"eval_samples_per_second": 4.539,
|
1508 |
+
"eval_steps_per_second": 0.567,
|
1509 |
+
"step": 100
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 3.15625,
|
1513 |
+
"grad_norm": 0.33666008484696835,
|
1514 |
+
"learning_rate": 2e-05,
|
1515 |
+
"loss": 0.7731,
|
1516 |
+
"step": 101
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 3.15625,
|
1520 |
+
"eval_loss": 0.7450191378593445,
|
1521 |
+
"eval_runtime": 44.0337,
|
1522 |
+
"eval_samples_per_second": 4.542,
|
1523 |
+
"eval_steps_per_second": 0.568,
|
1524 |
+
"step": 101
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 3.1875,
|
1528 |
+
"grad_norm": 0.3596265575837954,
|
1529 |
+
"learning_rate": 2e-05,
|
1530 |
+
"loss": 0.8354,
|
1531 |
+
"step": 102
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 3.1875,
|
1535 |
+
"eval_loss": 0.7442840337753296,
|
1536 |
+
"eval_runtime": 44.0804,
|
1537 |
+
"eval_samples_per_second": 4.537,
|
1538 |
+
"eval_steps_per_second": 0.567,
|
1539 |
+
"step": 102
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 3.21875,
|
1543 |
+
"grad_norm": 0.37228869739935877,
|
1544 |
+
"learning_rate": 2e-05,
|
1545 |
+
"loss": 0.8476,
|
1546 |
+
"step": 103
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 3.21875,
|
1550 |
+
"eval_loss": 0.74405837059021,
|
1551 |
+
"eval_runtime": 43.9201,
|
1552 |
+
"eval_samples_per_second": 4.554,
|
1553 |
+
"eval_steps_per_second": 0.569,
|
1554 |
+
"step": 103
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 3.25,
|
1558 |
+
"grad_norm": 0.372126737706513,
|
1559 |
+
"learning_rate": 2e-05,
|
1560 |
+
"loss": 0.7568,
|
1561 |
+
"step": 104
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 3.25,
|
1565 |
+
"eval_loss": 0.7435027360916138,
|
1566 |
+
"eval_runtime": 44.0105,
|
1567 |
+
"eval_samples_per_second": 4.544,
|
1568 |
+
"eval_steps_per_second": 0.568,
|
1569 |
+
"step": 104
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 3.28125,
|
1573 |
+
"grad_norm": 0.3362686942090606,
|
1574 |
+
"learning_rate": 2e-05,
|
1575 |
+
"loss": 0.8035,
|
1576 |
+
"step": 105
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 3.28125,
|
1580 |
+
"eval_loss": 0.7431904673576355,
|
1581 |
+
"eval_runtime": 43.9113,
|
1582 |
+
"eval_samples_per_second": 4.555,
|
1583 |
+
"eval_steps_per_second": 0.569,
|
1584 |
+
"step": 105
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 3.3125,
|
1588 |
+
"grad_norm": 0.36392229188159225,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.8353,
|
1591 |
+
"step": 106
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 3.3125,
|
1595 |
+
"eval_loss": 0.7430496215820312,
|
1596 |
+
"eval_runtime": 44.6371,
|
1597 |
+
"eval_samples_per_second": 4.481,
|
1598 |
+
"eval_steps_per_second": 0.56,
|
1599 |
+
"step": 106
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 3.34375,
|
1603 |
+
"grad_norm": 0.4471327905090859,
|
1604 |
+
"learning_rate": 2e-05,
|
1605 |
+
"loss": 0.7363,
|
1606 |
+
"step": 107
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 3.34375,
|
1610 |
+
"eval_loss": 0.7411425709724426,
|
1611 |
+
"eval_runtime": 44.7094,
|
1612 |
+
"eval_samples_per_second": 4.473,
|
1613 |
+
"eval_steps_per_second": 0.559,
|
1614 |
+
"step": 107
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 3.375,
|
1618 |
+
"grad_norm": 0.3716356236311949,
|
1619 |
+
"learning_rate": 2e-05,
|
1620 |
+
"loss": 0.7774,
|
1621 |
+
"step": 108
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 3.375,
|
1625 |
+
"eval_loss": 0.7391970753669739,
|
1626 |
+
"eval_runtime": 44.6877,
|
1627 |
+
"eval_samples_per_second": 4.476,
|
1628 |
+
"eval_steps_per_second": 0.559,
|
1629 |
+
"step": 108
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 3.40625,
|
1633 |
+
"grad_norm": 0.39848151618324823,
|
1634 |
+
"learning_rate": 2e-05,
|
1635 |
+
"loss": 0.766,
|
1636 |
+
"step": 109
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 3.40625,
|
1640 |
+
"eval_loss": 0.7370663285255432,
|
1641 |
+
"eval_runtime": 44.7716,
|
1642 |
+
"eval_samples_per_second": 4.467,
|
1643 |
+
"eval_steps_per_second": 0.558,
|
1644 |
+
"step": 109
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 3.4375,
|
1648 |
+
"grad_norm": 0.3979613694284285,
|
1649 |
+
"learning_rate": 2e-05,
|
1650 |
+
"loss": 0.7647,
|
1651 |
+
"step": 110
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 3.4375,
|
1655 |
+
"eval_loss": 0.7347142100334167,
|
1656 |
+
"eval_runtime": 46.1551,
|
1657 |
+
"eval_samples_per_second": 4.333,
|
1658 |
+
"eval_steps_per_second": 0.542,
|
1659 |
+
"step": 110
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 3.46875,
|
1663 |
+
"grad_norm": 0.4005021474949748,
|
1664 |
+
"learning_rate": 2e-05,
|
1665 |
+
"loss": 0.8363,
|
1666 |
+
"step": 111
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 3.46875,
|
1670 |
+
"eval_loss": 0.7330761551856995,
|
1671 |
+
"eval_runtime": 45.4921,
|
1672 |
+
"eval_samples_per_second": 4.396,
|
1673 |
+
"eval_steps_per_second": 0.55,
|
1674 |
+
"step": 111
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 3.5,
|
1678 |
+
"grad_norm": 0.3814831442952738,
|
1679 |
+
"learning_rate": 2e-05,
|
1680 |
+
"loss": 0.8172,
|
1681 |
+
"step": 112
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 3.5,
|
1685 |
+
"eval_loss": 0.7321842908859253,
|
1686 |
+
"eval_runtime": 46.3117,
|
1687 |
+
"eval_samples_per_second": 4.319,
|
1688 |
+
"eval_steps_per_second": 0.54,
|
1689 |
+
"step": 112
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.53125,
|
1693 |
+
"grad_norm": 0.37084330088188894,
|
1694 |
+
"learning_rate": 2e-05,
|
1695 |
+
"loss": 0.8984,
|
1696 |
+
"step": 113
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.53125,
|
1700 |
+
"eval_loss": 0.7323736548423767,
|
1701 |
+
"eval_runtime": 45.7394,
|
1702 |
+
"eval_samples_per_second": 4.373,
|
1703 |
+
"eval_steps_per_second": 0.547,
|
1704 |
+
"step": 113
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 3.5625,
|
1708 |
+
"grad_norm": 0.4074607742772961,
|
1709 |
+
"learning_rate": 2e-05,
|
1710 |
+
"loss": 0.7623,
|
1711 |
+
"step": 114
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 3.5625,
|
1715 |
+
"eval_loss": 0.7331156134605408,
|
1716 |
+
"eval_runtime": 47.2117,
|
1717 |
+
"eval_samples_per_second": 4.236,
|
1718 |
+
"eval_steps_per_second": 0.53,
|
1719 |
+
"step": 114
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 3.59375,
|
1723 |
+
"grad_norm": 0.3478981526620727,
|
1724 |
+
"learning_rate": 2e-05,
|
1725 |
+
"loss": 0.8294,
|
1726 |
+
"step": 115
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 3.59375,
|
1730 |
+
"eval_loss": 0.7339057326316833,
|
1731 |
+
"eval_runtime": 45.3783,
|
1732 |
+
"eval_samples_per_second": 4.407,
|
1733 |
+
"eval_steps_per_second": 0.551,
|
1734 |
+
"step": 115
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 3.625,
|
1738 |
+
"grad_norm": 0.4015868947675386,
|
1739 |
+
"learning_rate": 2e-05,
|
1740 |
+
"loss": 0.8,
|
1741 |
+
"step": 116
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 3.625,
|
1745 |
+
"eval_loss": 0.7341201305389404,
|
1746 |
+
"eval_runtime": 45.9888,
|
1747 |
+
"eval_samples_per_second": 4.349,
|
1748 |
+
"eval_steps_per_second": 0.544,
|
1749 |
+
"step": 116
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 3.65625,
|
1753 |
+
"grad_norm": 0.3908261734781783,
|
1754 |
+
"learning_rate": 2e-05,
|
1755 |
+
"loss": 0.7903,
|
1756 |
+
"step": 117
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 3.65625,
|
1760 |
+
"eval_loss": 0.7336520552635193,
|
1761 |
+
"eval_runtime": 45.9012,
|
1762 |
+
"eval_samples_per_second": 4.357,
|
1763 |
+
"eval_steps_per_second": 0.545,
|
1764 |
+
"step": 117
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 3.6875,
|
1768 |
+
"grad_norm": 0.39497646856232355,
|
1769 |
+
"learning_rate": 2e-05,
|
1770 |
+
"loss": 0.8072,
|
1771 |
+
"step": 118
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 3.6875,
|
1775 |
+
"eval_loss": 0.7335306406021118,
|
1776 |
+
"eval_runtime": 46.2389,
|
1777 |
+
"eval_samples_per_second": 4.325,
|
1778 |
+
"eval_steps_per_second": 0.541,
|
1779 |
+
"step": 118
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 3.71875,
|
1783 |
+
"grad_norm": 0.3773137872461335,
|
1784 |
+
"learning_rate": 2e-05,
|
1785 |
+
"loss": 0.8647,
|
1786 |
+
"step": 119
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 3.71875,
|
1790 |
+
"eval_loss": 0.7331534028053284,
|
1791 |
+
"eval_runtime": 46.662,
|
1792 |
+
"eval_samples_per_second": 4.286,
|
1793 |
+
"eval_steps_per_second": 0.536,
|
1794 |
+
"step": 119
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.75,
|
1798 |
+
"grad_norm": 0.353841599712999,
|
1799 |
+
"learning_rate": 2e-05,
|
1800 |
+
"loss": 0.8076,
|
1801 |
+
"step": 120
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.75,
|
1805 |
+
"eval_loss": 0.732619047164917,
|
1806 |
+
"eval_runtime": 47.5847,
|
1807 |
+
"eval_samples_per_second": 4.203,
|
1808 |
+
"eval_steps_per_second": 0.525,
|
1809 |
+
"step": 120
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 3.78125,
|
1813 |
+
"grad_norm": 0.38703604888096965,
|
1814 |
+
"learning_rate": 2e-05,
|
1815 |
+
"loss": 0.783,
|
1816 |
+
"step": 121
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 3.78125,
|
1820 |
+
"eval_loss": 0.7308679223060608,
|
1821 |
+
"eval_runtime": 47.3672,
|
1822 |
+
"eval_samples_per_second": 4.222,
|
1823 |
+
"eval_steps_per_second": 0.528,
|
1824 |
+
"step": 121
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 3.8125,
|
1828 |
+
"grad_norm": 0.406784109988961,
|
1829 |
+
"learning_rate": 2e-05,
|
1830 |
+
"loss": 0.8592,
|
1831 |
+
"step": 122
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 3.8125,
|
1835 |
+
"eval_loss": 0.7294270396232605,
|
1836 |
+
"eval_runtime": 46.3156,
|
1837 |
+
"eval_samples_per_second": 4.318,
|
1838 |
+
"eval_steps_per_second": 0.54,
|
1839 |
+
"step": 122
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 3.84375,
|
1843 |
+
"grad_norm": 0.3867362432665531,
|
1844 |
+
"learning_rate": 2e-05,
|
1845 |
+
"loss": 0.7773,
|
1846 |
+
"step": 123
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 3.84375,
|
1850 |
+
"eval_loss": 0.7278974056243896,
|
1851 |
+
"eval_runtime": 46.0714,
|
1852 |
+
"eval_samples_per_second": 4.341,
|
1853 |
+
"eval_steps_per_second": 0.543,
|
1854 |
+
"step": 123
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 3.875,
|
1858 |
+
"grad_norm": 0.37454905814944983,
|
1859 |
+
"learning_rate": 2e-05,
|
1860 |
+
"loss": 0.8054,
|
1861 |
+
"step": 124
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 3.875,
|
1865 |
+
"eval_loss": 0.7264491319656372,
|
1866 |
+
"eval_runtime": 46.0579,
|
1867 |
+
"eval_samples_per_second": 4.342,
|
1868 |
+
"eval_steps_per_second": 0.543,
|
1869 |
+
"step": 124
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 3.90625,
|
1873 |
+
"grad_norm": 0.444384159363942,
|
1874 |
+
"learning_rate": 2e-05,
|
1875 |
+
"loss": 0.8434,
|
1876 |
+
"step": 125
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 3.90625,
|
1880 |
+
"eval_loss": 0.7248883843421936,
|
1881 |
+
"eval_runtime": 46.2593,
|
1882 |
+
"eval_samples_per_second": 4.323,
|
1883 |
+
"eval_steps_per_second": 0.54,
|
1884 |
+
"step": 125
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 3.9375,
|
1888 |
+
"grad_norm": 0.4296603454332508,
|
1889 |
+
"learning_rate": 2e-05,
|
1890 |
+
"loss": 0.8154,
|
1891 |
+
"step": 126
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"epoch": 3.9375,
|
1895 |
+
"eval_loss": 0.7236350774765015,
|
1896 |
+
"eval_runtime": 47.8167,
|
1897 |
+
"eval_samples_per_second": 4.183,
|
1898 |
+
"eval_steps_per_second": 0.523,
|
1899 |
+
"step": 126
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.96875,
|
1903 |
+
"grad_norm": 0.4369101294390371,
|
1904 |
+
"learning_rate": 2e-05,
|
1905 |
+
"loss": 0.7759,
|
1906 |
+
"step": 127
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.96875,
|
1910 |
+
"eval_loss": 0.7224241495132446,
|
1911 |
+
"eval_runtime": 45.8583,
|
1912 |
+
"eval_samples_per_second": 4.361,
|
1913 |
+
"eval_steps_per_second": 0.545,
|
1914 |
+
"step": 127
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 4.0,
|
1918 |
+
"grad_norm": 0.4294598409798285,
|
1919 |
+
"learning_rate": 2e-05,
|
1920 |
+
"loss": 0.706,
|
1921 |
+
"step": 128
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 4.0,
|
1925 |
+
"eval_loss": 0.7210729718208313,
|
1926 |
+
"eval_runtime": 45.9047,
|
1927 |
+
"eval_samples_per_second": 4.357,
|
1928 |
+
"eval_steps_per_second": 0.545,
|
1929 |
+
"step": 128
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 4.03125,
|
1933 |
+
"grad_norm": 0.355178274167416,
|
1934 |
+
"learning_rate": 2e-05,
|
1935 |
+
"loss": 0.7969,
|
1936 |
+
"step": 129
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 4.03125,
|
1940 |
+
"eval_loss": 0.7206510901451111,
|
1941 |
+
"eval_runtime": 46.1016,
|
1942 |
+
"eval_samples_per_second": 4.338,
|
1943 |
+
"eval_steps_per_second": 0.542,
|
1944 |
+
"step": 129
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 4.0625,
|
1948 |
+
"grad_norm": 0.39855476598487416,
|
1949 |
+
"learning_rate": 2e-05,
|
1950 |
+
"loss": 0.8124,
|
1951 |
+
"step": 130
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 4.0625,
|
1955 |
+
"eval_loss": 0.7203733921051025,
|
1956 |
+
"eval_runtime": 46.5052,
|
1957 |
+
"eval_samples_per_second": 4.301,
|
1958 |
+
"eval_steps_per_second": 0.538,
|
1959 |
+
"step": 130
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 4.09375,
|
1963 |
+
"grad_norm": 0.38252767359910733,
|
1964 |
+
"learning_rate": 2e-05,
|
1965 |
+
"loss": 0.8126,
|
1966 |
+
"step": 131
|
1967 |
+
},
|
1968 |
+
{
|
1969 |
+
"epoch": 4.09375,
|
1970 |
+
"eval_loss": 0.7201277017593384,
|
1971 |
+
"eval_runtime": 47.5144,
|
1972 |
+
"eval_samples_per_second": 4.209,
|
1973 |
+
"eval_steps_per_second": 0.526,
|
1974 |
+
"step": 131
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 4.125,
|
1978 |
+
"grad_norm": 0.44006887742113143,
|
1979 |
+
"learning_rate": 2e-05,
|
1980 |
+
"loss": 0.7706,
|
1981 |
+
"step": 132
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 4.125,
|
1985 |
+
"eval_loss": 0.7195135354995728,
|
1986 |
+
"eval_runtime": 45.8417,
|
1987 |
+
"eval_samples_per_second": 4.363,
|
1988 |
+
"eval_steps_per_second": 0.545,
|
1989 |
+
"step": 132
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 4.15625,
|
1993 |
+
"grad_norm": 0.426129225179819,
|
1994 |
+
"learning_rate": 2e-05,
|
1995 |
+
"loss": 0.8699,
|
1996 |
+
"step": 133
|
1997 |
+
},
|
1998 |
+
{
|
1999 |
+
"epoch": 4.15625,
|
2000 |
+
"eval_loss": 0.7189508080482483,
|
2001 |
+
"eval_runtime": 46.2247,
|
2002 |
+
"eval_samples_per_second": 4.327,
|
2003 |
+
"eval_steps_per_second": 0.541,
|
2004 |
+
"step": 133
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 4.1875,
|
2008 |
+
"grad_norm": 0.4995092725647276,
|
2009 |
+
"learning_rate": 2e-05,
|
2010 |
+
"loss": 0.7811,
|
2011 |
+
"step": 134
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 4.1875,
|
2015 |
+
"eval_loss": 0.7180965542793274,
|
2016 |
+
"eval_runtime": 46.4605,
|
2017 |
+
"eval_samples_per_second": 4.305,
|
2018 |
+
"eval_steps_per_second": 0.538,
|
2019 |
+
"step": 134
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 4.21875,
|
2023 |
+
"grad_norm": 0.42664484060733815,
|
2024 |
+
"learning_rate": 2e-05,
|
2025 |
+
"loss": 0.7795,
|
2026 |
+
"step": 135
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 4.21875,
|
2030 |
+
"eval_loss": 0.7173775434494019,
|
2031 |
+
"eval_runtime": 46.1896,
|
2032 |
+
"eval_samples_per_second": 4.33,
|
2033 |
+
"eval_steps_per_second": 0.541,
|
2034 |
+
"step": 135
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 4.25,
|
2038 |
+
"grad_norm": 0.43970733071879864,
|
2039 |
+
"learning_rate": 2e-05,
|
2040 |
+
"loss": 0.772,
|
2041 |
+
"step": 136
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 4.25,
|
2045 |
+
"eval_loss": 0.716987133026123,
|
2046 |
+
"eval_runtime": 45.88,
|
2047 |
+
"eval_samples_per_second": 4.359,
|
2048 |
+
"eval_steps_per_second": 0.545,
|
2049 |
+
"step": 136
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 4.28125,
|
2053 |
+
"grad_norm": 0.4585774179958974,
|
2054 |
+
"learning_rate": 2e-05,
|
2055 |
+
"loss": 0.7594,
|
2056 |
+
"step": 137
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 4.28125,
|
2060 |
+
"eval_loss": 0.7162837386131287,
|
2061 |
+
"eval_runtime": 45.9687,
|
2062 |
+
"eval_samples_per_second": 4.351,
|
2063 |
+
"eval_steps_per_second": 0.544,
|
2064 |
+
"step": 137
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 4.3125,
|
2068 |
+
"grad_norm": 0.4482018280143517,
|
2069 |
+
"learning_rate": 2e-05,
|
2070 |
+
"loss": 0.7702,
|
2071 |
+
"step": 138
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 4.3125,
|
2075 |
+
"eval_loss": 0.7155399918556213,
|
2076 |
+
"eval_runtime": 46.1566,
|
2077 |
+
"eval_samples_per_second": 4.333,
|
2078 |
+
"eval_steps_per_second": 0.542,
|
2079 |
+
"step": 138
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 4.34375,
|
2083 |
+
"grad_norm": 0.44262087649988896,
|
2084 |
+
"learning_rate": 2e-05,
|
2085 |
+
"loss": 0.7323,
|
2086 |
+
"step": 139
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 4.34375,
|
2090 |
+
"eval_loss": 0.7145451307296753,
|
2091 |
+
"eval_runtime": 46.2257,
|
2092 |
+
"eval_samples_per_second": 4.327,
|
2093 |
+
"eval_steps_per_second": 0.541,
|
2094 |
+
"step": 139
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 4.375,
|
2098 |
+
"grad_norm": 0.4418100350036369,
|
2099 |
+
"learning_rate": 2e-05,
|
2100 |
+
"loss": 0.7669,
|
2101 |
+
"step": 140
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 4.375,
|
2105 |
+
"eval_loss": 0.7139186263084412,
|
2106 |
+
"eval_runtime": 46.1994,
|
2107 |
+
"eval_samples_per_second": 4.329,
|
2108 |
+
"eval_steps_per_second": 0.541,
|
2109 |
+
"step": 140
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 4.40625,
|
2113 |
+
"grad_norm": 0.4068223149751762,
|
2114 |
+
"learning_rate": 2e-05,
|
2115 |
+
"loss": 0.7806,
|
2116 |
+
"step": 141
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 4.40625,
|
2120 |
+
"eval_loss": 0.7134376764297485,
|
2121 |
+
"eval_runtime": 48.1068,
|
2122 |
+
"eval_samples_per_second": 4.157,
|
2123 |
+
"eval_steps_per_second": 0.52,
|
2124 |
+
"step": 141
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 4.4375,
|
2128 |
+
"grad_norm": 0.4339025102618351,
|
2129 |
+
"learning_rate": 2e-05,
|
2130 |
+
"loss": 0.7312,
|
2131 |
+
"step": 142
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 4.4375,
|
2135 |
+
"eval_loss": 0.7134268879890442,
|
2136 |
+
"eval_runtime": 46.8951,
|
2137 |
+
"eval_samples_per_second": 4.265,
|
2138 |
+
"eval_steps_per_second": 0.533,
|
2139 |
+
"step": 142
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 4.46875,
|
2143 |
+
"grad_norm": 0.45474838622605346,
|
2144 |
+
"learning_rate": 2e-05,
|
2145 |
+
"loss": 0.7358,
|
2146 |
+
"step": 143
|
2147 |
+
},
|
2148 |
+
{
|
2149 |
+
"epoch": 4.46875,
|
2150 |
+
"eval_loss": 0.7131960391998291,
|
2151 |
+
"eval_runtime": 46.8155,
|
2152 |
+
"eval_samples_per_second": 4.272,
|
2153 |
+
"eval_steps_per_second": 0.534,
|
2154 |
+
"step": 143
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 4.5,
|
2158 |
+
"grad_norm": 0.4284980958119551,
|
2159 |
+
"learning_rate": 2e-05,
|
2160 |
+
"loss": 0.7146,
|
2161 |
+
"step": 144
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 4.5,
|
2165 |
+
"eval_loss": 0.7122372388839722,
|
2166 |
+
"eval_runtime": 46.7899,
|
2167 |
+
"eval_samples_per_second": 4.274,
|
2168 |
+
"eval_steps_per_second": 0.534,
|
2169 |
+
"step": 144
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 4.53125,
|
2173 |
+
"grad_norm": 0.4679473362578349,
|
2174 |
+
"learning_rate": 2e-05,
|
2175 |
+
"loss": 0.8018,
|
2176 |
+
"step": 145
|
2177 |
+
},
|
2178 |
+
{
|
2179 |
+
"epoch": 4.53125,
|
2180 |
+
"eval_loss": 0.7106640338897705,
|
2181 |
+
"eval_runtime": 46.845,
|
2182 |
+
"eval_samples_per_second": 4.269,
|
2183 |
+
"eval_steps_per_second": 0.534,
|
2184 |
+
"step": 145
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 4.5625,
|
2188 |
+
"grad_norm": 0.4900067169351881,
|
2189 |
+
"learning_rate": 2e-05,
|
2190 |
+
"loss": 0.6884,
|
2191 |
+
"step": 146
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 4.5625,
|
2195 |
+
"eval_loss": 0.7087500095367432,
|
2196 |
+
"eval_runtime": 47.5958,
|
2197 |
+
"eval_samples_per_second": 4.202,
|
2198 |
+
"eval_steps_per_second": 0.525,
|
2199 |
+
"step": 146
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 4.59375,
|
2203 |
+
"grad_norm": 0.4734076525152252,
|
2204 |
+
"learning_rate": 2e-05,
|
2205 |
+
"loss": 0.7491,
|
2206 |
+
"step": 147
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"epoch": 4.59375,
|
2210 |
+
"eval_loss": 0.7072947025299072,
|
2211 |
+
"eval_runtime": 48.7251,
|
2212 |
+
"eval_samples_per_second": 4.105,
|
2213 |
+
"eval_steps_per_second": 0.513,
|
2214 |
+
"step": 147
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 4.625,
|
2218 |
+
"grad_norm": 0.44251158400098356,
|
2219 |
+
"learning_rate": 2e-05,
|
2220 |
+
"loss": 0.7052,
|
2221 |
+
"step": 148
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 4.625,
|
2225 |
+
"eval_loss": 0.7068507671356201,
|
2226 |
+
"eval_runtime": 47.7025,
|
2227 |
+
"eval_samples_per_second": 4.193,
|
2228 |
+
"eval_steps_per_second": 0.524,
|
2229 |
+
"step": 148
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 4.65625,
|
2233 |
+
"grad_norm": 0.4304625716692019,
|
2234 |
+
"learning_rate": 2e-05,
|
2235 |
+
"loss": 0.8176,
|
2236 |
+
"step": 149
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 4.65625,
|
2240 |
+
"eval_loss": 0.7074388265609741,
|
2241 |
+
"eval_runtime": 48.6321,
|
2242 |
+
"eval_samples_per_second": 4.113,
|
2243 |
+
"eval_steps_per_second": 0.514,
|
2244 |
+
"step": 149
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 4.6875,
|
2248 |
+
"grad_norm": 0.5157530943388945,
|
2249 |
+
"learning_rate": 2e-05,
|
2250 |
+
"loss": 0.7429,
|
2251 |
+
"step": 150
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 4.6875,
|
2255 |
+
"eval_loss": 0.7071186900138855,
|
2256 |
+
"eval_runtime": 47.9557,
|
2257 |
+
"eval_samples_per_second": 4.171,
|
2258 |
+
"eval_steps_per_second": 0.521,
|
2259 |
+
"step": 150
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 4.71875,
|
2263 |
+
"grad_norm": 0.5469994539610319,
|
2264 |
+
"learning_rate": 2e-05,
|
2265 |
+
"loss": 0.7643,
|
2266 |
+
"step": 151
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 4.71875,
|
2270 |
+
"eval_loss": 0.7050415277481079,
|
2271 |
+
"eval_runtime": 47.5207,
|
2272 |
+
"eval_samples_per_second": 4.209,
|
2273 |
+
"eval_steps_per_second": 0.526,
|
2274 |
+
"step": 151
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 4.75,
|
2278 |
+
"grad_norm": 0.4821891223190419,
|
2279 |
+
"learning_rate": 2e-05,
|
2280 |
+
"loss": 0.7795,
|
2281 |
+
"step": 152
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 4.75,
|
2285 |
+
"eval_loss": 0.7032743692398071,
|
2286 |
+
"eval_runtime": 47.2902,
|
2287 |
+
"eval_samples_per_second": 4.229,
|
2288 |
+
"eval_steps_per_second": 0.529,
|
2289 |
+
"step": 152
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 4.78125,
|
2293 |
+
"grad_norm": 0.4785594997922253,
|
2294 |
+
"learning_rate": 2e-05,
|
2295 |
+
"loss": 0.7323,
|
2296 |
+
"step": 153
|
2297 |
+
},
|
2298 |
+
{
|
2299 |
+
"epoch": 4.78125,
|
2300 |
+
"eval_loss": 0.7028358578681946,
|
2301 |
+
"eval_runtime": 47.7841,
|
2302 |
+
"eval_samples_per_second": 4.185,
|
2303 |
+
"eval_steps_per_second": 0.523,
|
2304 |
+
"step": 153
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 4.8125,
|
2308 |
+
"grad_norm": 0.47200733754346447,
|
2309 |
+
"learning_rate": 2e-05,
|
2310 |
+
"loss": 0.7555,
|
2311 |
+
"step": 154
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 4.8125,
|
2315 |
+
"eval_loss": 0.7034148573875427,
|
2316 |
+
"eval_runtime": 47.4952,
|
2317 |
+
"eval_samples_per_second": 4.211,
|
2318 |
+
"eval_steps_per_second": 0.526,
|
2319 |
+
"step": 154
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 4.84375,
|
2323 |
+
"grad_norm": 0.49226670914533455,
|
2324 |
+
"learning_rate": 2e-05,
|
2325 |
+
"loss": 0.6884,
|
2326 |
+
"step": 155
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 4.84375,
|
2330 |
+
"eval_loss": 0.7038142681121826,
|
2331 |
+
"eval_runtime": 47.6873,
|
2332 |
+
"eval_samples_per_second": 4.194,
|
2333 |
+
"eval_steps_per_second": 0.524,
|
2334 |
+
"step": 155
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 4.875,
|
2338 |
+
"grad_norm": 0.4894781168701622,
|
2339 |
+
"learning_rate": 2e-05,
|
2340 |
+
"loss": 0.8079,
|
2341 |
+
"step": 156
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 4.875,
|
2345 |
+
"eval_loss": 0.7031099200248718,
|
2346 |
+
"eval_runtime": 47.0438,
|
2347 |
+
"eval_samples_per_second": 4.251,
|
2348 |
+
"eval_steps_per_second": 0.531,
|
2349 |
+
"step": 156
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 4.90625,
|
2353 |
+
"grad_norm": 0.44465660848434874,
|
2354 |
+
"learning_rate": 2e-05,
|
2355 |
+
"loss": 0.7868,
|
2356 |
+
"step": 157
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 4.90625,
|
2360 |
+
"eval_loss": 0.7025811672210693,
|
2361 |
+
"eval_runtime": 47.2897,
|
2362 |
+
"eval_samples_per_second": 4.229,
|
2363 |
+
"eval_steps_per_second": 0.529,
|
2364 |
+
"step": 157
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 4.9375,
|
2368 |
+
"grad_norm": 0.4671993515654777,
|
2369 |
+
"learning_rate": 2e-05,
|
2370 |
+
"loss": 0.7949,
|
2371 |
+
"step": 158
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 4.9375,
|
2375 |
+
"eval_loss": 0.7016230225563049,
|
2376 |
+
"eval_runtime": 48.7147,
|
2377 |
+
"eval_samples_per_second": 4.106,
|
2378 |
+
"eval_steps_per_second": 0.513,
|
2379 |
+
"step": 158
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 4.96875,
|
2383 |
+
"grad_norm": 0.46593892888464733,
|
2384 |
+
"learning_rate": 2e-05,
|
2385 |
+
"loss": 0.7445,
|
2386 |
+
"step": 159
|
2387 |
+
},
|
2388 |
+
{
|
2389 |
+
"epoch": 4.96875,
|
2390 |
+
"eval_loss": 0.7006258964538574,
|
2391 |
+
"eval_runtime": 48.5723,
|
2392 |
+
"eval_samples_per_second": 4.118,
|
2393 |
+
"eval_steps_per_second": 0.515,
|
2394 |
+
"step": 159
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 5.0,
|
2398 |
+
"grad_norm": 0.47383657575274585,
|
2399 |
+
"learning_rate": 2e-05,
|
2400 |
+
"loss": 0.7233,
|
2401 |
+
"step": 160
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 5.0,
|
2405 |
+
"eval_loss": 0.7000269889831543,
|
2406 |
+
"eval_runtime": 48.7517,
|
2407 |
+
"eval_samples_per_second": 4.102,
|
2408 |
+
"eval_steps_per_second": 0.513,
|
2409 |
+
"step": 160
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 5.03125,
|
2413 |
+
"grad_norm": 0.42723336337060835,
|
2414 |
+
"learning_rate": 2e-05,
|
2415 |
+
"loss": 0.7061,
|
2416 |
+
"step": 161
|
2417 |
+
},
|
2418 |
+
{
|
2419 |
+
"epoch": 5.03125,
|
2420 |
+
"eval_loss": 0.7001045942306519,
|
2421 |
+
"eval_runtime": 51.0355,
|
2422 |
+
"eval_samples_per_second": 3.919,
|
2423 |
+
"eval_steps_per_second": 0.49,
|
2424 |
+
"step": 161
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 5.0625,
|
2428 |
+
"grad_norm": 0.452950592019195,
|
2429 |
+
"learning_rate": 2e-05,
|
2430 |
+
"loss": 0.8489,
|
2431 |
+
"step": 162
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 5.0625,
|
2435 |
+
"eval_loss": 0.7011143565177917,
|
2436 |
+
"eval_runtime": 44.0195,
|
2437 |
+
"eval_samples_per_second": 4.543,
|
2438 |
+
"eval_steps_per_second": 0.568,
|
2439 |
+
"step": 162
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 5.09375,
|
2443 |
+
"grad_norm": 0.49095068041556844,
|
2444 |
+
"learning_rate": 2e-05,
|
2445 |
+
"loss": 0.6523,
|
2446 |
+
"step": 163
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 5.09375,
|
2450 |
+
"eval_loss": 0.7020147442817688,
|
2451 |
+
"eval_runtime": 43.9994,
|
2452 |
+
"eval_samples_per_second": 4.546,
|
2453 |
+
"eval_steps_per_second": 0.568,
|
2454 |
+
"step": 163
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 5.125,
|
2458 |
+
"grad_norm": 0.49702685752637826,
|
2459 |
+
"learning_rate": 2e-05,
|
2460 |
+
"loss": 0.7931,
|
2461 |
+
"step": 164
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"epoch": 5.125,
|
2465 |
+
"eval_loss": 0.7026366591453552,
|
2466 |
+
"eval_runtime": 43.7736,
|
2467 |
+
"eval_samples_per_second": 4.569,
|
2468 |
+
"eval_steps_per_second": 0.571,
|
2469 |
+
"step": 164
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 5.15625,
|
2473 |
+
"grad_norm": 0.5894972181165574,
|
2474 |
+
"learning_rate": 2e-05,
|
2475 |
+
"loss": 0.6297,
|
2476 |
+
"step": 165
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"epoch": 5.15625,
|
2480 |
+
"eval_loss": 0.7018793225288391,
|
2481 |
+
"eval_runtime": 43.8277,
|
2482 |
+
"eval_samples_per_second": 4.563,
|
2483 |
+
"eval_steps_per_second": 0.57,
|
2484 |
+
"step": 165
|
2485 |
+
},
|
2486 |
+
{
|
2487 |
+
"epoch": 5.1875,
|
2488 |
+
"grad_norm": 0.5431599726243479,
|
2489 |
+
"learning_rate": 2e-05,
|
2490 |
+
"loss": 0.7394,
|
2491 |
+
"step": 166
|
2492 |
+
},
|
2493 |
+
{
|
2494 |
+
"epoch": 5.1875,
|
2495 |
+
"eval_loss": 0.701405942440033,
|
2496 |
+
"eval_runtime": 46.007,
|
2497 |
+
"eval_samples_per_second": 4.347,
|
2498 |
+
"eval_steps_per_second": 0.543,
|
2499 |
+
"step": 166
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 5.21875,
|
2503 |
+
"grad_norm": 0.46081080554385206,
|
2504 |
+
"learning_rate": 2e-05,
|
2505 |
+
"loss": 0.7587,
|
2506 |
+
"step": 167
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 5.21875,
|
2510 |
+
"eval_loss": 0.7011873126029968,
|
2511 |
+
"eval_runtime": 45.6739,
|
2512 |
+
"eval_samples_per_second": 4.379,
|
2513 |
+
"eval_steps_per_second": 0.547,
|
2514 |
+
"step": 167
|
2515 |
+
},
|
2516 |
+
{
|
2517 |
+
"epoch": 5.25,
|
2518 |
+
"grad_norm": 0.5186784959253576,
|
2519 |
+
"learning_rate": 2e-05,
|
2520 |
+
"loss": 0.7944,
|
2521 |
+
"step": 168
|
2522 |
+
},
|
2523 |
+
{
|
2524 |
+
"epoch": 5.25,
|
2525 |
+
"eval_loss": 0.7006779313087463,
|
2526 |
+
"eval_runtime": 46.6382,
|
2527 |
+
"eval_samples_per_second": 4.288,
|
2528 |
+
"eval_steps_per_second": 0.536,
|
2529 |
+
"step": 168
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 5.28125,
|
2533 |
+
"grad_norm": 0.484045023962852,
|
2534 |
+
"learning_rate": 2e-05,
|
2535 |
+
"loss": 0.7149,
|
2536 |
+
"step": 169
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 5.28125,
|
2540 |
+
"eval_loss": 0.7005323171615601,
|
2541 |
+
"eval_runtime": 45.7584,
|
2542 |
+
"eval_samples_per_second": 4.371,
|
2543 |
+
"eval_steps_per_second": 0.546,
|
2544 |
+
"step": 169
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 5.3125,
|
2548 |
+
"grad_norm": 0.5719751134907255,
|
2549 |
+
"learning_rate": 2e-05,
|
2550 |
+
"loss": 0.6939,
|
2551 |
+
"step": 170
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 5.3125,
|
2555 |
+
"eval_loss": 0.7002266645431519,
|
2556 |
+
"eval_runtime": 45.9679,
|
2557 |
+
"eval_samples_per_second": 4.351,
|
2558 |
+
"eval_steps_per_second": 0.544,
|
2559 |
+
"step": 170
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 5.34375,
|
2563 |
+
"grad_norm": 0.6060894153712378,
|
2564 |
+
"learning_rate": 2e-05,
|
2565 |
+
"loss": 0.7048,
|
2566 |
+
"step": 171
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 5.34375,
|
2570 |
+
"eval_loss": 0.6983186602592468,
|
2571 |
+
"eval_runtime": 47.2598,
|
2572 |
+
"eval_samples_per_second": 4.232,
|
2573 |
+
"eval_steps_per_second": 0.529,
|
2574 |
+
"step": 171
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 5.375,
|
2578 |
+
"grad_norm": 0.5548499769346423,
|
2579 |
+
"learning_rate": 2e-05,
|
2580 |
+
"loss": 0.7881,
|
2581 |
+
"step": 172
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 5.375,
|
2585 |
+
"eval_loss": 0.6966648697853088,
|
2586 |
+
"eval_runtime": 47.0803,
|
2587 |
+
"eval_samples_per_second": 4.248,
|
2588 |
+
"eval_steps_per_second": 0.531,
|
2589 |
+
"step": 172
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 5.40625,
|
2593 |
+
"grad_norm": 0.5102316819603098,
|
2594 |
+
"learning_rate": 2e-05,
|
2595 |
+
"loss": 0.7542,
|
2596 |
+
"step": 173
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"epoch": 5.40625,
|
2600 |
+
"eval_loss": 0.6953878998756409,
|
2601 |
+
"eval_runtime": 48.3238,
|
2602 |
+
"eval_samples_per_second": 4.139,
|
2603 |
+
"eval_steps_per_second": 0.517,
|
2604 |
+
"step": 173
|
2605 |
+
},
|
2606 |
+
{
|
2607 |
+
"epoch": 5.4375,
|
2608 |
+
"grad_norm": 0.5399890621278476,
|
2609 |
+
"learning_rate": 2e-05,
|
2610 |
+
"loss": 0.7937,
|
2611 |
+
"step": 174
|
2612 |
+
},
|
2613 |
+
{
|
2614 |
+
"epoch": 5.4375,
|
2615 |
+
"eval_loss": 0.69431471824646,
|
2616 |
+
"eval_runtime": 49.2122,
|
2617 |
+
"eval_samples_per_second": 4.064,
|
2618 |
+
"eval_steps_per_second": 0.508,
|
2619 |
+
"step": 174
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 5.46875,
|
2623 |
+
"grad_norm": 0.5252423839534397,
|
2624 |
+
"learning_rate": 2e-05,
|
2625 |
+
"loss": 0.7767,
|
2626 |
+
"step": 175
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 5.46875,
|
2630 |
+
"eval_loss": 0.6944937109947205,
|
2631 |
+
"eval_runtime": 49.0039,
|
2632 |
+
"eval_samples_per_second": 4.081,
|
2633 |
+
"eval_steps_per_second": 0.51,
|
2634 |
+
"step": 175
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 5.5,
|
2638 |
+
"grad_norm": 0.5422683424689886,
|
2639 |
+
"learning_rate": 2e-05,
|
2640 |
+
"loss": 0.7171,
|
2641 |
+
"step": 176
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 5.5,
|
2645 |
+
"eval_loss": 0.6943515539169312,
|
2646 |
+
"eval_runtime": 48.7295,
|
2647 |
+
"eval_samples_per_second": 4.104,
|
2648 |
+
"eval_steps_per_second": 0.513,
|
2649 |
+
"step": 176
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 5.53125,
|
2653 |
+
"grad_norm": 0.551339022612633,
|
2654 |
+
"learning_rate": 2e-05,
|
2655 |
+
"loss": 0.7529,
|
2656 |
+
"step": 177
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 5.53125,
|
2660 |
+
"eval_loss": 0.6935855150222778,
|
2661 |
+
"eval_runtime": 50.259,
|
2662 |
+
"eval_samples_per_second": 3.979,
|
2663 |
+
"eval_steps_per_second": 0.497,
|
2664 |
+
"step": 177
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 5.5625,
|
2668 |
+
"grad_norm": 0.5040662348893271,
|
2669 |
+
"learning_rate": 2e-05,
|
2670 |
+
"loss": 0.7816,
|
2671 |
+
"step": 178
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 5.5625,
|
2675 |
+
"eval_loss": 0.6929727792739868,
|
2676 |
+
"eval_runtime": 49.9267,
|
2677 |
+
"eval_samples_per_second": 4.006,
|
2678 |
+
"eval_steps_per_second": 0.501,
|
2679 |
+
"step": 178
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 5.59375,
|
2683 |
+
"grad_norm": 0.538094993002792,
|
2684 |
+
"learning_rate": 2e-05,
|
2685 |
+
"loss": 0.6785,
|
2686 |
+
"step": 179
|
2687 |
+
},
|
2688 |
+
{
|
2689 |
+
"epoch": 5.59375,
|
2690 |
+
"eval_loss": 0.6930323839187622,
|
2691 |
+
"eval_runtime": 48.28,
|
2692 |
+
"eval_samples_per_second": 4.143,
|
2693 |
+
"eval_steps_per_second": 0.518,
|
2694 |
+
"step": 179
|
2695 |
+
},
|
2696 |
+
{
|
2697 |
+
"epoch": 5.625,
|
2698 |
+
"grad_norm": 0.5367726605699668,
|
2699 |
+
"learning_rate": 2e-05,
|
2700 |
+
"loss": 0.6868,
|
2701 |
+
"step": 180
|
2702 |
+
},
|
2703 |
+
{
|
2704 |
+
"epoch": 5.625,
|
2705 |
+
"eval_loss": 0.6928802728652954,
|
2706 |
+
"eval_runtime": 49.8478,
|
2707 |
+
"eval_samples_per_second": 4.012,
|
2708 |
+
"eval_steps_per_second": 0.502,
|
2709 |
+
"step": 180
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 5.65625,
|
2713 |
+
"grad_norm": 0.5978542074838507,
|
2714 |
+
"learning_rate": 2e-05,
|
2715 |
+
"loss": 0.698,
|
2716 |
+
"step": 181
|
2717 |
+
},
|
2718 |
+
{
|
2719 |
+
"epoch": 5.65625,
|
2720 |
+
"eval_loss": 0.6921787858009338,
|
2721 |
+
"eval_runtime": 50.778,
|
2722 |
+
"eval_samples_per_second": 3.939,
|
2723 |
+
"eval_steps_per_second": 0.492,
|
2724 |
+
"step": 181
|
2725 |
+
},
|
2726 |
+
{
|
2727 |
+
"epoch": 5.6875,
|
2728 |
+
"grad_norm": 0.5779173967988954,
|
2729 |
+
"learning_rate": 2e-05,
|
2730 |
+
"loss": 0.664,
|
2731 |
+
"step": 182
|
2732 |
+
},
|
2733 |
+
{
|
2734 |
+
"epoch": 5.6875,
|
2735 |
+
"eval_loss": 0.6921034455299377,
|
2736 |
+
"eval_runtime": 49.7171,
|
2737 |
+
"eval_samples_per_second": 4.023,
|
2738 |
+
"eval_steps_per_second": 0.503,
|
2739 |
+
"step": 182
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 5.71875,
|
2743 |
+
"grad_norm": 0.6377165996743129,
|
2744 |
+
"learning_rate": 2e-05,
|
2745 |
+
"loss": 0.7051,
|
2746 |
+
"step": 183
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 5.71875,
|
2750 |
+
"eval_loss": 0.6914942264556885,
|
2751 |
+
"eval_runtime": 51.9608,
|
2752 |
+
"eval_samples_per_second": 3.849,
|
2753 |
+
"eval_steps_per_second": 0.481,
|
2754 |
+
"step": 183
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 5.75,
|
2758 |
+
"grad_norm": 0.6093388082076064,
|
2759 |
+
"learning_rate": 2e-05,
|
2760 |
+
"loss": 0.6903,
|
2761 |
+
"step": 184
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 5.75,
|
2765 |
+
"eval_loss": 0.6904594302177429,
|
2766 |
+
"eval_runtime": 49.6144,
|
2767 |
+
"eval_samples_per_second": 4.031,
|
2768 |
+
"eval_steps_per_second": 0.504,
|
2769 |
+
"step": 184
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 5.78125,
|
2773 |
+
"grad_norm": 0.5987747297973711,
|
2774 |
+
"learning_rate": 2e-05,
|
2775 |
+
"loss": 0.7368,
|
2776 |
+
"step": 185
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 5.78125,
|
2780 |
+
"eval_loss": 0.6894869804382324,
|
2781 |
+
"eval_runtime": 49.7122,
|
2782 |
+
"eval_samples_per_second": 4.023,
|
2783 |
+
"eval_steps_per_second": 0.503,
|
2784 |
+
"step": 185
|
2785 |
+
},
|
2786 |
+
{
|
2787 |
+
"epoch": 5.8125,
|
2788 |
+
"grad_norm": 0.5914952733954625,
|
2789 |
+
"learning_rate": 2e-05,
|
2790 |
+
"loss": 0.7003,
|
2791 |
+
"step": 186
|
2792 |
+
},
|
2793 |
+
{
|
2794 |
+
"epoch": 5.8125,
|
2795 |
+
"eval_loss": 0.6885225772857666,
|
2796 |
+
"eval_runtime": 49.8474,
|
2797 |
+
"eval_samples_per_second": 4.012,
|
2798 |
+
"eval_steps_per_second": 0.502,
|
2799 |
+
"step": 186
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 5.84375,
|
2803 |
+
"grad_norm": 0.5641237505681922,
|
2804 |
+
"learning_rate": 2e-05,
|
2805 |
+
"loss": 0.7571,
|
2806 |
+
"step": 187
|
2807 |
+
},
|
2808 |
+
{
|
2809 |
+
"epoch": 5.84375,
|
2810 |
+
"eval_loss": 0.6889610290527344,
|
2811 |
+
"eval_runtime": 51.5925,
|
2812 |
+
"eval_samples_per_second": 3.877,
|
2813 |
+
"eval_steps_per_second": 0.485,
|
2814 |
+
"step": 187
|
2815 |
+
},
|
2816 |
+
{
|
2817 |
+
"epoch": 5.875,
|
2818 |
+
"grad_norm": 0.5566285784572296,
|
2819 |
+
"learning_rate": 2e-05,
|
2820 |
+
"loss": 0.6882,
|
2821 |
+
"step": 188
|
2822 |
+
},
|
2823 |
+
{
|
2824 |
+
"epoch": 5.875,
|
2825 |
+
"eval_loss": 0.6903389692306519,
|
2826 |
+
"eval_runtime": 49.713,
|
2827 |
+
"eval_samples_per_second": 4.023,
|
2828 |
+
"eval_steps_per_second": 0.503,
|
2829 |
+
"step": 188
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 5.90625,
|
2833 |
+
"grad_norm": 0.5594562993560854,
|
2834 |
+
"learning_rate": 2e-05,
|
2835 |
+
"loss": 0.7028,
|
2836 |
+
"step": 189
|
2837 |
+
},
|
2838 |
+
{
|
2839 |
+
"epoch": 5.90625,
|
2840 |
+
"eval_loss": 0.6911373734474182,
|
2841 |
+
"eval_runtime": 49.929,
|
2842 |
+
"eval_samples_per_second": 4.006,
|
2843 |
+
"eval_steps_per_second": 0.501,
|
2844 |
+
"step": 189
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 5.9375,
|
2848 |
+
"grad_norm": 0.6114177699067616,
|
2849 |
+
"learning_rate": 2e-05,
|
2850 |
+
"loss": 0.7181,
|
2851 |
+
"step": 190
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 5.9375,
|
2855 |
+
"eval_loss": 0.6901592016220093,
|
2856 |
+
"eval_runtime": 49.9032,
|
2857 |
+
"eval_samples_per_second": 4.008,
|
2858 |
+
"eval_steps_per_second": 0.501,
|
2859 |
+
"step": 190
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 5.96875,
|
2863 |
+
"grad_norm": 0.5564307101453613,
|
2864 |
+
"learning_rate": 2e-05,
|
2865 |
+
"loss": 0.7116,
|
2866 |
+
"step": 191
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 5.96875,
|
2870 |
+
"eval_loss": 0.6883879899978638,
|
2871 |
+
"eval_runtime": 49.9457,
|
2872 |
+
"eval_samples_per_second": 4.004,
|
2873 |
+
"eval_steps_per_second": 0.501,
|
2874 |
+
"step": 191
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 6.0,
|
2878 |
+
"grad_norm": 0.5242139835965315,
|
2879 |
+
"learning_rate": 2e-05,
|
2880 |
+
"loss": 0.6956,
|
2881 |
+
"step": 192
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 6.0,
|
2885 |
+
"eval_loss": 0.686991274356842,
|
2886 |
+
"eval_runtime": 51.3206,
|
2887 |
+
"eval_samples_per_second": 3.897,
|
2888 |
+
"eval_steps_per_second": 0.487,
|
2889 |
+
"step": 192
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 6.03125,
|
2893 |
+
"grad_norm": 0.5661038874224659,
|
2894 |
+
"learning_rate": 2e-05,
|
2895 |
+
"loss": 0.7667,
|
2896 |
+
"step": 193
|
2897 |
+
},
|
2898 |
+
{
|
2899 |
+
"epoch": 6.03125,
|
2900 |
+
"eval_loss": 0.6863989233970642,
|
2901 |
+
"eval_runtime": 50.3486,
|
2902 |
+
"eval_samples_per_second": 3.972,
|
2903 |
+
"eval_steps_per_second": 0.497,
|
2904 |
+
"step": 193
|
2905 |
+
},
|
2906 |
+
{
|
2907 |
+
"epoch": 6.0625,
|
2908 |
+
"grad_norm": 0.5015705892320539,
|
2909 |
+
"learning_rate": 2e-05,
|
2910 |
+
"loss": 0.7289,
|
2911 |
+
"step": 194
|
2912 |
+
},
|
2913 |
+
{
|
2914 |
+
"epoch": 6.0625,
|
2915 |
+
"eval_loss": 0.6869972348213196,
|
2916 |
+
"eval_runtime": 51.6966,
|
2917 |
+
"eval_samples_per_second": 3.869,
|
2918 |
+
"eval_steps_per_second": 0.484,
|
2919 |
+
"step": 194
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 6.09375,
|
2923 |
+
"grad_norm": 0.5679476318211268,
|
2924 |
+
"learning_rate": 2e-05,
|
2925 |
+
"loss": 0.6595,
|
2926 |
+
"step": 195
|
2927 |
+
},
|
2928 |
+
{
|
2929 |
+
"epoch": 6.09375,
|
2930 |
+
"eval_loss": 0.6878303289413452,
|
2931 |
+
"eval_runtime": 44.1921,
|
2932 |
+
"eval_samples_per_second": 4.526,
|
2933 |
+
"eval_steps_per_second": 0.566,
|
2934 |
+
"step": 195
|
2935 |
+
},
|
2936 |
+
{
|
2937 |
+
"epoch": 6.125,
|
2938 |
+
"grad_norm": 0.5496769650020654,
|
2939 |
+
"learning_rate": 2e-05,
|
2940 |
+
"loss": 0.6934,
|
2941 |
+
"step": 196
|
2942 |
+
},
|
2943 |
+
{
|
2944 |
+
"epoch": 6.125,
|
2945 |
+
"eval_loss": 0.689085841178894,
|
2946 |
+
"eval_runtime": 44.0432,
|
2947 |
+
"eval_samples_per_second": 4.541,
|
2948 |
+
"eval_steps_per_second": 0.568,
|
2949 |
+
"step": 196
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 6.15625,
|
2953 |
+
"grad_norm": 0.5761731163916711,
|
2954 |
+
"learning_rate": 2e-05,
|
2955 |
+
"loss": 0.7212,
|
2956 |
+
"step": 197
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 6.15625,
|
2960 |
+
"eval_loss": 0.6919547915458679,
|
2961 |
+
"eval_runtime": 45.3631,
|
2962 |
+
"eval_samples_per_second": 4.409,
|
2963 |
+
"eval_steps_per_second": 0.551,
|
2964 |
+
"step": 197
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 6.1875,
|
2968 |
+
"grad_norm": 0.6093485410765964,
|
2969 |
+
"learning_rate": 2e-05,
|
2970 |
+
"loss": 0.8013,
|
2971 |
+
"step": 198
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 6.1875,
|
2975 |
+
"eval_loss": 0.6936098337173462,
|
2976 |
+
"eval_runtime": 44.1956,
|
2977 |
+
"eval_samples_per_second": 4.525,
|
2978 |
+
"eval_steps_per_second": 0.566,
|
2979 |
+
"step": 198
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 6.21875,
|
2983 |
+
"grad_norm": 0.6670365325797192,
|
2984 |
+
"learning_rate": 2e-05,
|
2985 |
+
"loss": 0.666,
|
2986 |
+
"step": 199
|
2987 |
+
},
|
2988 |
+
{
|
2989 |
+
"epoch": 6.21875,
|
2990 |
+
"eval_loss": 0.693129301071167,
|
2991 |
+
"eval_runtime": 44.0131,
|
2992 |
+
"eval_samples_per_second": 4.544,
|
2993 |
+
"eval_steps_per_second": 0.568,
|
2994 |
+
"step": 199
|
2995 |
+
},
|
2996 |
+
{
|
2997 |
+
"epoch": 6.25,
|
2998 |
+
"grad_norm": 0.6464592274733308,
|
2999 |
+
"learning_rate": 2e-05,
|
3000 |
+
"loss": 0.7134,
|
3001 |
+
"step": 200
|
3002 |
+
},
|
3003 |
+
{
|
3004 |
+
"epoch": 6.25,
|
3005 |
+
"eval_loss": 0.6912326216697693,
|
3006 |
+
"eval_runtime": 44.0,
|
3007 |
+
"eval_samples_per_second": 4.545,
|
3008 |
+
"eval_steps_per_second": 0.568,
|
3009 |
+
"step": 200
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 6.28125,
|
3013 |
+
"grad_norm": 0.6088225232188101,
|
3014 |
+
"learning_rate": 2e-05,
|
3015 |
+
"loss": 0.7405,
|
3016 |
+
"step": 201
|
3017 |
+
},
|
3018 |
+
{
|
3019 |
+
"epoch": 6.28125,
|
3020 |
+
"eval_loss": 0.6896650195121765,
|
3021 |
+
"eval_runtime": 44.3194,
|
3022 |
+
"eval_samples_per_second": 4.513,
|
3023 |
+
"eval_steps_per_second": 0.564,
|
3024 |
+
"step": 201
|
3025 |
+
},
|
3026 |
+
{
|
3027 |
+
"epoch": 6.3125,
|
3028 |
+
"grad_norm": 0.6638309972807995,
|
3029 |
+
"learning_rate": 2e-05,
|
3030 |
+
"loss": 0.6542,
|
3031 |
+
"step": 202
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"epoch": 6.3125,
|
3035 |
+
"eval_loss": 0.6878445148468018,
|
3036 |
+
"eval_runtime": 44.2101,
|
3037 |
+
"eval_samples_per_second": 4.524,
|
3038 |
+
"eval_steps_per_second": 0.565,
|
3039 |
+
"step": 202
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 6.34375,
|
3043 |
+
"grad_norm": 0.5632348029553863,
|
3044 |
+
"learning_rate": 2e-05,
|
3045 |
+
"loss": 0.7953,
|
3046 |
+
"step": 203
|
3047 |
+
},
|
3048 |
+
{
|
3049 |
+
"epoch": 6.34375,
|
3050 |
+
"eval_loss": 0.6869116425514221,
|
3051 |
+
"eval_runtime": 44.0039,
|
3052 |
+
"eval_samples_per_second": 4.545,
|
3053 |
+
"eval_steps_per_second": 0.568,
|
3054 |
+
"step": 203
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 6.375,
|
3058 |
+
"grad_norm": 0.6753158068984167,
|
3059 |
+
"learning_rate": 2e-05,
|
3060 |
+
"loss": 0.6369,
|
3061 |
+
"step": 204
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 6.375,
|
3065 |
+
"eval_loss": 0.6856124997138977,
|
3066 |
+
"eval_runtime": 44.2493,
|
3067 |
+
"eval_samples_per_second": 4.52,
|
3068 |
+
"eval_steps_per_second": 0.565,
|
3069 |
+
"step": 204
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 6.40625,
|
3073 |
+
"grad_norm": 0.5601655147962107,
|
3074 |
+
"learning_rate": 2e-05,
|
3075 |
+
"loss": 0.6291,
|
3076 |
+
"step": 205
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 6.40625,
|
3080 |
+
"eval_loss": 0.685504138469696,
|
3081 |
+
"eval_runtime": 43.9463,
|
3082 |
+
"eval_samples_per_second": 4.551,
|
3083 |
+
"eval_steps_per_second": 0.569,
|
3084 |
+
"step": 205
|
3085 |
+
},
|
3086 |
+
{
|
3087 |
+
"epoch": 6.4375,
|
3088 |
+
"grad_norm": 0.6578412065562369,
|
3089 |
+
"learning_rate": 2e-05,
|
3090 |
+
"loss": 0.6887,
|
3091 |
+
"step": 206
|
3092 |
+
},
|
3093 |
+
{
|
3094 |
+
"epoch": 6.4375,
|
3095 |
+
"eval_loss": 0.6858142018318176,
|
3096 |
+
"eval_runtime": 45.1556,
|
3097 |
+
"eval_samples_per_second": 4.429,
|
3098 |
+
"eval_steps_per_second": 0.554,
|
3099 |
+
"step": 206
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 6.46875,
|
3103 |
+
"grad_norm": 0.6149787250576099,
|
3104 |
+
"learning_rate": 2e-05,
|
3105 |
+
"loss": 0.7375,
|
3106 |
+
"step": 207
|
3107 |
+
},
|
3108 |
+
{
|
3109 |
+
"epoch": 6.46875,
|
3110 |
+
"eval_loss": 0.6860241889953613,
|
3111 |
+
"eval_runtime": 44.9447,
|
3112 |
+
"eval_samples_per_second": 4.45,
|
3113 |
+
"eval_steps_per_second": 0.556,
|
3114 |
+
"step": 207
|
3115 |
+
},
|
3116 |
+
{
|
3117 |
+
"epoch": 6.5,
|
3118 |
+
"grad_norm": 0.6674521606961297,
|
3119 |
+
"learning_rate": 2e-05,
|
3120 |
+
"loss": 0.6856,
|
3121 |
+
"step": 208
|
3122 |
+
},
|
3123 |
+
{
|
3124 |
+
"epoch": 6.5,
|
3125 |
+
"eval_loss": 0.6866363286972046,
|
3126 |
+
"eval_runtime": 44.714,
|
3127 |
+
"eval_samples_per_second": 4.473,
|
3128 |
+
"eval_steps_per_second": 0.559,
|
3129 |
+
"step": 208
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 6.53125,
|
3133 |
+
"grad_norm": 0.700420859386899,
|
3134 |
+
"learning_rate": 2e-05,
|
3135 |
+
"loss": 0.6556,
|
3136 |
+
"step": 209
|
3137 |
+
},
|
3138 |
+
{
|
3139 |
+
"epoch": 6.53125,
|
3140 |
+
"eval_loss": 0.6870286464691162,
|
3141 |
+
"eval_runtime": 44.8923,
|
3142 |
+
"eval_samples_per_second": 4.455,
|
3143 |
+
"eval_steps_per_second": 0.557,
|
3144 |
+
"step": 209
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 6.5625,
|
3148 |
+
"grad_norm": 0.6530651968630973,
|
3149 |
+
"learning_rate": 2e-05,
|
3150 |
+
"loss": 0.6334,
|
3151 |
+
"step": 210
|
3152 |
+
},
|
3153 |
+
{
|
3154 |
+
"epoch": 6.5625,
|
3155 |
+
"eval_loss": 0.6872709393501282,
|
3156 |
+
"eval_runtime": 44.7944,
|
3157 |
+
"eval_samples_per_second": 4.465,
|
3158 |
+
"eval_steps_per_second": 0.558,
|
3159 |
+
"step": 210
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 6.59375,
|
3163 |
+
"grad_norm": 0.695757498482456,
|
3164 |
+
"learning_rate": 2e-05,
|
3165 |
+
"loss": 0.6784,
|
3166 |
+
"step": 211
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 6.59375,
|
3170 |
+
"eval_loss": 0.6869171857833862,
|
3171 |
+
"eval_runtime": 45.755,
|
3172 |
+
"eval_samples_per_second": 4.371,
|
3173 |
+
"eval_steps_per_second": 0.546,
|
3174 |
+
"step": 211
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 6.625,
|
3178 |
+
"grad_norm": 0.642060810781652,
|
3179 |
+
"learning_rate": 2e-05,
|
3180 |
+
"loss": 0.6489,
|
3181 |
+
"step": 212
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 6.625,
|
3185 |
+
"eval_loss": 0.685666024684906,
|
3186 |
+
"eval_runtime": 46.4458,
|
3187 |
+
"eval_samples_per_second": 4.306,
|
3188 |
+
"eval_steps_per_second": 0.538,
|
3189 |
+
"step": 212
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 6.65625,
|
3193 |
+
"grad_norm": 0.6088750940603561,
|
3194 |
+
"learning_rate": 2e-05,
|
3195 |
+
"loss": 0.7216,
|
3196 |
+
"step": 213
|
3197 |
+
},
|
3198 |
+
{
|
3199 |
+
"epoch": 6.65625,
|
3200 |
+
"eval_loss": 0.6843697428703308,
|
3201 |
+
"eval_runtime": 46.1389,
|
3202 |
+
"eval_samples_per_second": 4.335,
|
3203 |
+
"eval_steps_per_second": 0.542,
|
3204 |
+
"step": 213
|
3205 |
+
},
|
3206 |
+
{
|
3207 |
+
"epoch": 6.6875,
|
3208 |
+
"grad_norm": 0.6043945628080053,
|
3209 |
+
"learning_rate": 2e-05,
|
3210 |
+
"loss": 0.692,
|
3211 |
+
"step": 214
|
3212 |
+
},
|
3213 |
+
{
|
3214 |
+
"epoch": 6.6875,
|
3215 |
+
"eval_loss": 0.6836680769920349,
|
3216 |
+
"eval_runtime": 47.7324,
|
3217 |
+
"eval_samples_per_second": 4.19,
|
3218 |
+
"eval_steps_per_second": 0.524,
|
3219 |
+
"step": 214
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 6.71875,
|
3223 |
+
"grad_norm": 0.6506615838970475,
|
3224 |
+
"learning_rate": 2e-05,
|
3225 |
+
"loss": 0.691,
|
3226 |
+
"step": 215
|
3227 |
+
},
|
3228 |
+
{
|
3229 |
+
"epoch": 6.71875,
|
3230 |
+
"eval_loss": 0.6824812293052673,
|
3231 |
+
"eval_runtime": 45.8056,
|
3232 |
+
"eval_samples_per_second": 4.366,
|
3233 |
+
"eval_steps_per_second": 0.546,
|
3234 |
+
"step": 215
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 6.75,
|
3238 |
+
"grad_norm": 0.6878268158673746,
|
3239 |
+
"learning_rate": 2e-05,
|
3240 |
+
"loss": 0.6894,
|
3241 |
+
"step": 216
|
3242 |
+
},
|
3243 |
+
{
|
3244 |
+
"epoch": 6.75,
|
3245 |
+
"eval_loss": 0.6817054748535156,
|
3246 |
+
"eval_runtime": 46.47,
|
3247 |
+
"eval_samples_per_second": 4.304,
|
3248 |
+
"eval_steps_per_second": 0.538,
|
3249 |
+
"step": 216
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 6.78125,
|
3253 |
+
"grad_norm": 0.6793999118325932,
|
3254 |
+
"learning_rate": 2e-05,
|
3255 |
+
"loss": 0.6394,
|
3256 |
+
"step": 217
|
3257 |
+
},
|
3258 |
+
{
|
3259 |
+
"epoch": 6.78125,
|
3260 |
+
"eval_loss": 0.6831635236740112,
|
3261 |
+
"eval_runtime": 47.8532,
|
3262 |
+
"eval_samples_per_second": 4.179,
|
3263 |
+
"eval_steps_per_second": 0.522,
|
3264 |
+
"step": 217
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 6.8125,
|
3268 |
+
"grad_norm": 0.6935365262523343,
|
3269 |
+
"learning_rate": 2e-05,
|
3270 |
+
"loss": 0.6341,
|
3271 |
+
"step": 218
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 6.8125,
|
3275 |
+
"eval_loss": 0.6843095421791077,
|
3276 |
+
"eval_runtime": 46.3828,
|
3277 |
+
"eval_samples_per_second": 4.312,
|
3278 |
+
"eval_steps_per_second": 0.539,
|
3279 |
+
"step": 218
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 6.84375,
|
3283 |
+
"grad_norm": 0.8071019513751874,
|
3284 |
+
"learning_rate": 2e-05,
|
3285 |
+
"loss": 0.7211,
|
3286 |
+
"step": 219
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 6.84375,
|
3290 |
+
"eval_loss": 0.6839814782142639,
|
3291 |
+
"eval_runtime": 46.5771,
|
3292 |
+
"eval_samples_per_second": 4.294,
|
3293 |
+
"eval_steps_per_second": 0.537,
|
3294 |
+
"step": 219
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 6.875,
|
3298 |
+
"grad_norm": 0.7202535741704769,
|
3299 |
+
"learning_rate": 2e-05,
|
3300 |
+
"loss": 0.7305,
|
3301 |
+
"step": 220
|
3302 |
+
},
|
3303 |
+
{
|
3304 |
+
"epoch": 6.875,
|
3305 |
+
"eval_loss": 0.6822354197502136,
|
3306 |
+
"eval_runtime": 46.6149,
|
3307 |
+
"eval_samples_per_second": 4.29,
|
3308 |
+
"eval_steps_per_second": 0.536,
|
3309 |
+
"step": 220
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 6.90625,
|
3313 |
+
"grad_norm": 0.6829442890004696,
|
3314 |
+
"learning_rate": 2e-05,
|
3315 |
+
"loss": 0.6965,
|
3316 |
+
"step": 221
|
3317 |
+
},
|
3318 |
+
{
|
3319 |
+
"epoch": 6.90625,
|
3320 |
+
"eval_loss": 0.6804749369621277,
|
3321 |
+
"eval_runtime": 47.9027,
|
3322 |
+
"eval_samples_per_second": 4.175,
|
3323 |
+
"eval_steps_per_second": 0.522,
|
3324 |
+
"step": 221
|
3325 |
+
},
|
3326 |
+
{
|
3327 |
+
"epoch": 6.9375,
|
3328 |
+
"grad_norm": 0.7007337811403486,
|
3329 |
+
"learning_rate": 2e-05,
|
3330 |
+
"loss": 0.6948,
|
3331 |
+
"step": 222
|
3332 |
+
},
|
3333 |
+
{
|
3334 |
+
"epoch": 6.9375,
|
3335 |
+
"eval_loss": 0.6785742044448853,
|
3336 |
+
"eval_runtime": 48.3484,
|
3337 |
+
"eval_samples_per_second": 4.137,
|
3338 |
+
"eval_steps_per_second": 0.517,
|
3339 |
+
"step": 222
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 6.96875,
|
3343 |
+
"grad_norm": 0.6672225040660534,
|
3344 |
+
"learning_rate": 2e-05,
|
3345 |
+
"loss": 0.7075,
|
3346 |
+
"step": 223
|
3347 |
+
},
|
3348 |
+
{
|
3349 |
+
"epoch": 6.96875,
|
3350 |
+
"eval_loss": 0.6771878004074097,
|
3351 |
+
"eval_runtime": 46.3836,
|
3352 |
+
"eval_samples_per_second": 4.312,
|
3353 |
+
"eval_steps_per_second": 0.539,
|
3354 |
+
"step": 223
|
3355 |
+
},
|
3356 |
+
{
|
3357 |
+
"epoch": 7.0,
|
3358 |
+
"grad_norm": 0.6893374424350143,
|
3359 |
+
"learning_rate": 2e-05,
|
3360 |
+
"loss": 0.7652,
|
3361 |
+
"step": 224
|
3362 |
+
},
|
3363 |
+
{
|
3364 |
+
"epoch": 7.0,
|
3365 |
+
"eval_loss": 0.6772673726081848,
|
3366 |
+
"eval_runtime": 47.0913,
|
3367 |
+
"eval_samples_per_second": 4.247,
|
3368 |
+
"eval_steps_per_second": 0.531,
|
3369 |
+
"step": 224
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 7.03125,
|
3373 |
+
"grad_norm": 0.5866908507437849,
|
3374 |
+
"learning_rate": 2e-05,
|
3375 |
+
"loss": 0.6784,
|
3376 |
+
"step": 225
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 7.03125,
|
3380 |
+
"eval_loss": 0.6778077483177185,
|
3381 |
+
"eval_runtime": 46.7766,
|
3382 |
+
"eval_samples_per_second": 4.276,
|
3383 |
+
"eval_steps_per_second": 0.534,
|
3384 |
+
"step": 225
|
3385 |
+
},
|
3386 |
+
{
|
3387 |
+
"epoch": 7.0625,
|
3388 |
+
"grad_norm": 0.6620785641323407,
|
3389 |
+
"learning_rate": 2e-05,
|
3390 |
+
"loss": 0.6107,
|
3391 |
+
"step": 226
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 7.0625,
|
3395 |
+
"eval_loss": 0.6797336339950562,
|
3396 |
+
"eval_runtime": 47.0779,
|
3397 |
+
"eval_samples_per_second": 4.248,
|
3398 |
+
"eval_steps_per_second": 0.531,
|
3399 |
+
"step": 226
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 7.09375,
|
3403 |
+
"grad_norm": 0.6646660025868149,
|
3404 |
+
"learning_rate": 2e-05,
|
3405 |
+
"loss": 0.6824,
|
3406 |
+
"step": 227
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 7.09375,
|
3410 |
+
"eval_loss": 0.6831703186035156,
|
3411 |
+
"eval_runtime": 46.4223,
|
3412 |
+
"eval_samples_per_second": 4.308,
|
3413 |
+
"eval_steps_per_second": 0.539,
|
3414 |
+
"step": 227
|
3415 |
+
},
|
3416 |
+
{
|
3417 |
+
"epoch": 7.125,
|
3418 |
+
"grad_norm": 0.7653429329219695,
|
3419 |
+
"learning_rate": 2e-05,
|
3420 |
+
"loss": 0.6289,
|
3421 |
+
"step": 228
|
3422 |
+
},
|
3423 |
+
{
|
3424 |
+
"epoch": 7.125,
|
3425 |
+
"eval_loss": 0.6889806985855103,
|
3426 |
+
"eval_runtime": 48.2668,
|
3427 |
+
"eval_samples_per_second": 4.144,
|
3428 |
+
"eval_steps_per_second": 0.518,
|
3429 |
+
"step": 228
|
3430 |
+
},
|
3431 |
+
{
|
3432 |
+
"epoch": 7.15625,
|
3433 |
+
"grad_norm": 0.888507299589656,
|
3434 |
+
"learning_rate": 2e-05,
|
3435 |
+
"loss": 0.6405,
|
3436 |
+
"step": 229
|
3437 |
+
},
|
3438 |
+
{
|
3439 |
+
"epoch": 7.15625,
|
3440 |
+
"eval_loss": 0.6938297748565674,
|
3441 |
+
"eval_runtime": 48.2833,
|
3442 |
+
"eval_samples_per_second": 4.142,
|
3443 |
+
"eval_steps_per_second": 0.518,
|
3444 |
+
"step": 229
|
3445 |
+
},
|
3446 |
+
{
|
3447 |
+
"epoch": 7.1875,
|
3448 |
+
"grad_norm": 0.8483995966585272,
|
3449 |
+
"learning_rate": 2e-05,
|
3450 |
+
"loss": 0.6256,
|
3451 |
+
"step": 230
|
3452 |
+
},
|
3453 |
+
{
|
3454 |
+
"epoch": 7.1875,
|
3455 |
+
"eval_loss": 0.6941313147544861,
|
3456 |
+
"eval_runtime": 46.6028,
|
3457 |
+
"eval_samples_per_second": 4.292,
|
3458 |
+
"eval_steps_per_second": 0.536,
|
3459 |
+
"step": 230
|
3460 |
+
},
|
3461 |
+
{
|
3462 |
+
"epoch": 7.21875,
|
3463 |
+
"grad_norm": 0.8529011065789557,
|
3464 |
+
"learning_rate": 2e-05,
|
3465 |
+
"loss": 0.719,
|
3466 |
+
"step": 231
|
3467 |
+
},
|
3468 |
+
{
|
3469 |
+
"epoch": 7.21875,
|
3470 |
+
"eval_loss": 0.6908813714981079,
|
3471 |
+
"eval_runtime": 47.7668,
|
3472 |
+
"eval_samples_per_second": 4.187,
|
3473 |
+
"eval_steps_per_second": 0.523,
|
3474 |
+
"step": 231
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 7.25,
|
3478 |
+
"grad_norm": 0.7891947191711363,
|
3479 |
+
"learning_rate": 2e-05,
|
3480 |
+
"loss": 0.7122,
|
3481 |
+
"step": 232
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 7.25,
|
3485 |
+
"eval_loss": 0.6873031854629517,
|
3486 |
+
"eval_runtime": 46.9441,
|
3487 |
+
"eval_samples_per_second": 4.26,
|
3488 |
+
"eval_steps_per_second": 0.533,
|
3489 |
+
"step": 232
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 7.28125,
|
3493 |
+
"grad_norm": 0.8410831266636205,
|
3494 |
+
"learning_rate": 2e-05,
|
3495 |
+
"loss": 0.6655,
|
3496 |
+
"step": 233
|
3497 |
+
},
|
3498 |
+
{
|
3499 |
+
"epoch": 7.28125,
|
3500 |
+
"eval_loss": 0.6842228174209595,
|
3501 |
+
"eval_runtime": 48.184,
|
3502 |
+
"eval_samples_per_second": 4.151,
|
3503 |
+
"eval_steps_per_second": 0.519,
|
3504 |
+
"step": 233
|
3505 |
+
},
|
3506 |
+
{
|
3507 |
+
"epoch": 7.3125,
|
3508 |
+
"grad_norm": 0.7543966645145809,
|
3509 |
+
"learning_rate": 2e-05,
|
3510 |
+
"loss": 0.702,
|
3511 |
+
"step": 234
|
3512 |
+
},
|
3513 |
+
{
|
3514 |
+
"epoch": 7.3125,
|
3515 |
+
"eval_loss": 0.6826092600822449,
|
3516 |
+
"eval_runtime": 48.7587,
|
3517 |
+
"eval_samples_per_second": 4.102,
|
3518 |
+
"eval_steps_per_second": 0.513,
|
3519 |
+
"step": 234
|
3520 |
+
},
|
3521 |
+
{
|
3522 |
+
"epoch": 7.34375,
|
3523 |
+
"grad_norm": 0.69863349246919,
|
3524 |
+
"learning_rate": 2e-05,
|
3525 |
+
"loss": 0.6676,
|
3526 |
+
"step": 235
|
3527 |
+
},
|
3528 |
+
{
|
3529 |
+
"epoch": 7.34375,
|
3530 |
+
"eval_loss": 0.6820936799049377,
|
3531 |
+
"eval_runtime": 46.5095,
|
3532 |
+
"eval_samples_per_second": 4.3,
|
3533 |
+
"eval_steps_per_second": 0.538,
|
3534 |
+
"step": 235
|
3535 |
+
},
|
3536 |
+
{
|
3537 |
+
"epoch": 7.375,
|
3538 |
+
"grad_norm": 0.7718198795174328,
|
3539 |
+
"learning_rate": 2e-05,
|
3540 |
+
"loss": 0.6322,
|
3541 |
+
"step": 236
|
3542 |
+
},
|
3543 |
+
{
|
3544 |
+
"epoch": 7.375,
|
3545 |
+
"eval_loss": 0.681590735912323,
|
3546 |
+
"eval_runtime": 47.6491,
|
3547 |
+
"eval_samples_per_second": 4.197,
|
3548 |
+
"eval_steps_per_second": 0.525,
|
3549 |
+
"step": 236
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 7.40625,
|
3553 |
+
"grad_norm": 0.8032644336352275,
|
3554 |
+
"learning_rate": 2e-05,
|
3555 |
+
"loss": 0.6835,
|
3556 |
+
"step": 237
|
3557 |
+
},
|
3558 |
+
{
|
3559 |
+
"epoch": 7.40625,
|
3560 |
+
"eval_loss": 0.6806458234786987,
|
3561 |
+
"eval_runtime": 47.1412,
|
3562 |
+
"eval_samples_per_second": 4.243,
|
3563 |
+
"eval_steps_per_second": 0.53,
|
3564 |
+
"step": 237
|
3565 |
+
},
|
3566 |
+
{
|
3567 |
+
"epoch": 7.4375,
|
3568 |
+
"grad_norm": 0.8165151350063435,
|
3569 |
+
"learning_rate": 2e-05,
|
3570 |
+
"loss": 0.6744,
|
3571 |
+
"step": 238
|
3572 |
+
},
|
3573 |
+
{
|
3574 |
+
"epoch": 7.4375,
|
3575 |
+
"eval_loss": 0.6802331805229187,
|
3576 |
+
"eval_runtime": 48.2476,
|
3577 |
+
"eval_samples_per_second": 4.145,
|
3578 |
+
"eval_steps_per_second": 0.518,
|
3579 |
+
"step": 238
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 7.46875,
|
3583 |
+
"grad_norm": 0.7665175082054141,
|
3584 |
+
"learning_rate": 2e-05,
|
3585 |
+
"loss": 0.6955,
|
3586 |
+
"step": 239
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 7.46875,
|
3590 |
+
"eval_loss": 0.6806652545928955,
|
3591 |
+
"eval_runtime": 46.6541,
|
3592 |
+
"eval_samples_per_second": 4.287,
|
3593 |
+
"eval_steps_per_second": 0.536,
|
3594 |
+
"step": 239
|
3595 |
+
},
|
3596 |
+
{
|
3597 |
+
"epoch": 7.5,
|
3598 |
+
"grad_norm": 0.7584547487112137,
|
3599 |
+
"learning_rate": 2e-05,
|
3600 |
+
"loss": 0.6374,
|
3601 |
+
"step": 240
|
3602 |
+
},
|
3603 |
+
{
|
3604 |
+
"epoch": 7.5,
|
3605 |
+
"eval_loss": 0.6825945973396301,
|
3606 |
+
"eval_runtime": 46.3848,
|
3607 |
+
"eval_samples_per_second": 4.312,
|
3608 |
+
"eval_steps_per_second": 0.539,
|
3609 |
+
"step": 240
|
3610 |
+
},
|
3611 |
+
{
|
3612 |
+
"epoch": 7.53125,
|
3613 |
+
"grad_norm": 0.660822695597991,
|
3614 |
+
"learning_rate": 2e-05,
|
3615 |
+
"loss": 0.6825,
|
3616 |
+
"step": 241
|
3617 |
+
},
|
3618 |
+
{
|
3619 |
+
"epoch": 7.53125,
|
3620 |
+
"eval_loss": 0.6861986517906189,
|
3621 |
+
"eval_runtime": 46.2732,
|
3622 |
+
"eval_samples_per_second": 4.322,
|
3623 |
+
"eval_steps_per_second": 0.54,
|
3624 |
+
"step": 241
|
3625 |
+
},
|
3626 |
+
{
|
3627 |
+
"epoch": 7.5625,
|
3628 |
+
"grad_norm": 0.7793836425815985,
|
3629 |
+
"learning_rate": 2e-05,
|
3630 |
+
"loss": 0.6824,
|
3631 |
+
"step": 242
|
3632 |
+
},
|
3633 |
+
{
|
3634 |
+
"epoch": 7.5625,
|
3635 |
+
"eval_loss": 0.6895106434822083,
|
3636 |
+
"eval_runtime": 46.6462,
|
3637 |
+
"eval_samples_per_second": 4.288,
|
3638 |
+
"eval_steps_per_second": 0.536,
|
3639 |
+
"step": 242
|
3640 |
+
},
|
3641 |
+
{
|
3642 |
+
"epoch": 7.59375,
|
3643 |
+
"grad_norm": 0.8237113294656135,
|
3644 |
+
"learning_rate": 2e-05,
|
3645 |
+
"loss": 0.6604,
|
3646 |
+
"step": 243
|
3647 |
+
},
|
3648 |
+
{
|
3649 |
+
"epoch": 7.59375,
|
3650 |
+
"eval_loss": 0.6898853778839111,
|
3651 |
+
"eval_runtime": 46.7904,
|
3652 |
+
"eval_samples_per_second": 4.274,
|
3653 |
+
"eval_steps_per_second": 0.534,
|
3654 |
+
"step": 243
|
3655 |
+
},
|
3656 |
+
{
|
3657 |
+
"epoch": 7.625,
|
3658 |
+
"grad_norm": 0.9966126829271594,
|
3659 |
+
"learning_rate": 2e-05,
|
3660 |
+
"loss": 0.7297,
|
3661 |
+
"step": 244
|
3662 |
+
},
|
3663 |
+
{
|
3664 |
+
"epoch": 7.625,
|
3665 |
+
"eval_loss": 0.6854925751686096,
|
3666 |
+
"eval_runtime": 46.5541,
|
3667 |
+
"eval_samples_per_second": 4.296,
|
3668 |
+
"eval_steps_per_second": 0.537,
|
3669 |
+
"step": 244
|
3670 |
+
},
|
3671 |
+
{
|
3672 |
+
"epoch": 7.65625,
|
3673 |
+
"grad_norm": 0.7581680879353856,
|
3674 |
+
"learning_rate": 2e-05,
|
3675 |
+
"loss": 0.6319,
|
3676 |
+
"step": 245
|
3677 |
+
},
|
3678 |
+
{
|
3679 |
+
"epoch": 7.65625,
|
3680 |
+
"eval_loss": 0.6836807131767273,
|
3681 |
+
"eval_runtime": 48.3404,
|
3682 |
+
"eval_samples_per_second": 4.137,
|
3683 |
+
"eval_steps_per_second": 0.517,
|
3684 |
+
"step": 245
|
3685 |
+
},
|
3686 |
+
{
|
3687 |
+
"epoch": 7.6875,
|
3688 |
+
"grad_norm": 0.799947909805063,
|
3689 |
+
"learning_rate": 2e-05,
|
3690 |
+
"loss": 0.672,
|
3691 |
+
"step": 246
|
3692 |
+
},
|
3693 |
+
{
|
3694 |
+
"epoch": 7.6875,
|
3695 |
+
"eval_loss": 0.681761622428894,
|
3696 |
+
"eval_runtime": 50.0597,
|
3697 |
+
"eval_samples_per_second": 3.995,
|
3698 |
+
"eval_steps_per_second": 0.499,
|
3699 |
+
"step": 246
|
3700 |
+
},
|
3701 |
+
{
|
3702 |
+
"epoch": 7.71875,
|
3703 |
+
"grad_norm": 0.8377626405796506,
|
3704 |
+
"learning_rate": 2e-05,
|
3705 |
+
"loss": 0.6727,
|
3706 |
+
"step": 247
|
3707 |
+
},
|
3708 |
+
{
|
3709 |
+
"epoch": 7.71875,
|
3710 |
+
"eval_loss": 0.6791908144950867,
|
3711 |
+
"eval_runtime": 49.25,
|
3712 |
+
"eval_samples_per_second": 4.061,
|
3713 |
+
"eval_steps_per_second": 0.508,
|
3714 |
+
"step": 247
|
3715 |
+
},
|
3716 |
+
{
|
3717 |
+
"epoch": 7.75,
|
3718 |
+
"grad_norm": 0.7237789197029182,
|
3719 |
+
"learning_rate": 2e-05,
|
3720 |
+
"loss": 0.6576,
|
3721 |
+
"step": 248
|
3722 |
+
},
|
3723 |
+
{
|
3724 |
+
"epoch": 7.75,
|
3725 |
+
"eval_loss": 0.6767004132270813,
|
3726 |
+
"eval_runtime": 48.5162,
|
3727 |
+
"eval_samples_per_second": 4.122,
|
3728 |
+
"eval_steps_per_second": 0.515,
|
3729 |
+
"step": 248
|
3730 |
+
},
|
3731 |
+
{
|
3732 |
+
"epoch": 7.78125,
|
3733 |
+
"grad_norm": 0.7946831722044173,
|
3734 |
+
"learning_rate": 2e-05,
|
3735 |
+
"loss": 0.7029,
|
3736 |
+
"step": 249
|
3737 |
+
},
|
3738 |
+
{
|
3739 |
+
"epoch": 7.78125,
|
3740 |
+
"eval_loss": 0.675483763217926,
|
3741 |
+
"eval_runtime": 49.9932,
|
3742 |
+
"eval_samples_per_second": 4.001,
|
3743 |
+
"eval_steps_per_second": 0.5,
|
3744 |
+
"step": 249
|
3745 |
+
},
|
3746 |
+
{
|
3747 |
+
"epoch": 7.8125,
|
3748 |
+
"grad_norm": 0.7259305030593936,
|
3749 |
+
"learning_rate": 2e-05,
|
3750 |
+
"loss": 0.7109,
|
3751 |
+
"step": 250
|
3752 |
+
},
|
3753 |
+
{
|
3754 |
+
"epoch": 7.8125,
|
3755 |
+
"eval_loss": 0.6768932938575745,
|
3756 |
+
"eval_runtime": 49.852,
|
3757 |
+
"eval_samples_per_second": 4.012,
|
3758 |
+
"eval_steps_per_second": 0.501,
|
3759 |
+
"step": 250
|
3760 |
+
}
|
3761 |
+
],
|
3762 |
+
"logging_steps": 1.0,
|
3763 |
+
"max_steps": 256,
|
3764 |
+
"num_input_tokens_seen": 0,
|
3765 |
+
"num_train_epochs": 8,
|
3766 |
+
"save_steps": 5,
|
3767 |
+
"stateful_callbacks": {
|
3768 |
+
"TrainerControl": {
|
3769 |
+
"args": {
|
3770 |
+
"should_epoch_stop": false,
|
3771 |
+
"should_evaluate": false,
|
3772 |
+
"should_log": false,
|
3773 |
+
"should_save": true,
|
3774 |
+
"should_training_stop": false
|
3775 |
+
},
|
3776 |
+
"attributes": {}
|
3777 |
+
}
|
3778 |
+
},
|
3779 |
+
"total_flos": 323774769004544.0,
|
3780 |
+
"train_batch_size": 8,
|
3781 |
+
"trial_name": null,
|
3782 |
+
"trial_params": null
|
3783 |
+
}
|
llava-v1.6-vicuna-7b/checkpoint-250/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea8611394d63bbf39faf873e11963832cd01e9cc120193562f724dc8f437c23b
|
3 |
+
size 8248
|
llava-v1.6-vicuna-7b/checkpoint-250/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
llava-v1.6-vicuna-7b/checkpoint-320/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.6-vicuna-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
llava-v1.6-vicuna-7b/checkpoint-320/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"o_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"k_proj",
|
26 |
+
"v_proj",
|
27 |
+
"up_proj",
|
28 |
+
"down_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
llava-v1.6-vicuna-7b/checkpoint-320/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4313b2ea485203d6fba1b8b80e837fc73325327f1f1f16fd39522be0b1da358c
|
3 |
+
size 42421336
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b660c176ff036e1ecc58bfcfeae750716f314fbdef0ec57ac00a32dabc17f256
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eee39e8847c82b78f31b57b8d84784bbacd842f2b4d1858e74d6d91b3c333c7
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7bf3add73552d5025f0487dd677774f926967ca02fc108fbef5c2473dc1ef74
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8008a5a3f6fa99449d364364055d849bc255f8fe9025193a109095b3a70d6a7
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7a72445f646f627cc5cbfe9d51d86e7d78a8be9e42bde9660900382e9888907
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d007cd1e6b6a49fcec0bed80ffe4cddf535ecaa9473f9bf211e6c79b931e119
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f66849ad6c27fe564bd58ec87848fd0164e25403ca9da48d69fdcc9798ef396f
|
3 |
+
size 663858
|
llava-v1.6-vicuna-7b/checkpoint-320/global_step320/zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a93a75be323db17c5e5ff3951975403ebb597fdf2a9e235f408c197203e4dbd8
|
3 |
+
size 126447597
|
llava-v1.6-vicuna-7b/checkpoint-320/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step320
|
llava-v1.6-vicuna-7b/checkpoint-320/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cad37dced9658289185bb66d80e38cc3d7678aa17da9cb91f735b159161af7e
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-320/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c415fda9f147269c953b761d51e95cffbd238d1fca03960a4e9750a33b27c8f7
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-320/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd1022d43464067191ecca4286fd1d603c7c279203f15e4a7d4c5f31930e3675
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-320/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6996376d0f47446f767340c6749d456b3ebbe770f49ec176c9f7441e988720c
|
3 |
+
size 14960
|
llava-v1.6-vicuna-7b/checkpoint-320/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
llava-v1.6-vicuna-7b/checkpoint-320/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
llava-v1.6-vicuna-7b/checkpoint-320/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 2048,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
llava-v1.6-vicuna-7b/checkpoint-320/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llava-v1.6-vicuna-7b/checkpoint-320/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eea5b87d44dd458ed50657a8bb3e49c499ba27787b87233c867be9d754a4078
|
3 |
+
size 8248
|
llava-v1.6-vicuna-7b/checkpoint-320/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
llava-v1.6-vicuna-7b/config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
4 |
+
"architectures": [
|
5 |
+
"LlavaLlamaForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_bias": false,
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"freeze_mm_mlp_adapter": false,
|
12 |
+
"freeze_mm_vision_resampler": false,
|
13 |
+
"head_dim": 128,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"image_aspect_ratio": "pad",
|
17 |
+
"image_crop_resolution": 224,
|
18 |
+
"image_grid_pinpoints": [
|
19 |
+
[
|
20 |
+
336,
|
21 |
+
672
|
22 |
+
],
|
23 |
+
[
|
24 |
+
672,
|
25 |
+
336
|
26 |
+
],
|
27 |
+
[
|
28 |
+
672,
|
29 |
+
672
|
30 |
+
],
|
31 |
+
[
|
32 |
+
1008,
|
33 |
+
336
|
34 |
+
],
|
35 |
+
[
|
36 |
+
336,
|
37 |
+
1008
|
38 |
+
]
|
39 |
+
],
|
40 |
+
"image_split_resolution": 224,
|
41 |
+
"initializer_range": 0.02,
|
42 |
+
"intermediate_size": 11008,
|
43 |
+
"max_position_embeddings": 4096,
|
44 |
+
"mlp_bias": false,
|
45 |
+
"mm_hidden_size": 1024,
|
46 |
+
"mm_patch_merge_type": "flat",
|
47 |
+
"mm_projector_lr": 2e-05,
|
48 |
+
"mm_projector_type": "mlp2x_gelu",
|
49 |
+
"mm_resampler_type": null,
|
50 |
+
"mm_use_im_patch_token": false,
|
51 |
+
"mm_use_im_start_end": false,
|
52 |
+
"mm_vision_select_feature": "patch",
|
53 |
+
"mm_vision_select_layer": -2,
|
54 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
55 |
+
"mm_vision_tower_lr": 2e-06,
|
56 |
+
"model_type": "llava_llama",
|
57 |
+
"num_attention_heads": 32,
|
58 |
+
"num_hidden_layers": 32,
|
59 |
+
"num_key_value_heads": 32,
|
60 |
+
"pad_token_id": 0,
|
61 |
+
"pretraining_tp": 1,
|
62 |
+
"rms_norm_eps": 1e-05,
|
63 |
+
"rope_scaling": null,
|
64 |
+
"rope_theta": 10000.0,
|
65 |
+
"tie_word_embeddings": false,
|
66 |
+
"tokenizer_model_max_length": 2048,
|
67 |
+
"tokenizer_padding_side": "right",
|
68 |
+
"torch_dtype": "bfloat16",
|
69 |
+
"transformers_version": "4.46.0",
|
70 |
+
"tune_mm_mlp_adapter": false,
|
71 |
+
"tune_mm_vision_resampler": false,
|
72 |
+
"unfreeze_mm_vision_tower": true,
|
73 |
+
"use_cache": true,
|
74 |
+
"use_mm_proj": true,
|
75 |
+
"vocab_size": 32000
|
76 |
+
}
|
llava-v1.6-vicuna-7b/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f91e7376b38b4898ee030d0d2d4cc3f0bc12b54dd1a5ea96ec8a81fbd93ede09
|
3 |
+
size 41961648
|
llava-v1.6-vicuna-7b/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1e26f3db90c35ad4d4a612238fe53fb32f8c1bebaaa3c1e2dff52289e6f653d
|
3 |
+
size 126446114
|