--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: cardiffnlp/twitter-roberta-base-sentiment model-index: - name: mongolian-twitter-roberta-base-sentiment-ner results: [] --- # mongolian-twitter-roberta-base-sentiment-ner This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1674 - Precision: 0.7560 - Recall: 0.8395 - F1: 0.7955 - Accuracy: 0.9540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4091 | 1.0 | 477 | 0.2507 | 0.5166 | 0.6789 | 0.5868 | 0.9162 | | 0.2467 | 2.0 | 954 | 0.2363 | 0.6415 | 0.7465 | 0.6900 | 0.9243 | | 0.2051 | 3.0 | 1431 | 0.1921 | 0.6732 | 0.7857 | 0.7251 | 0.9374 | | 0.1738 | 4.0 | 1908 | 0.1746 | 0.6965 | 0.8038 | 0.7463 | 0.9440 | | 0.1475 | 5.0 | 2385 | 0.1680 | 0.7217 | 0.8172 | 0.7665 | 0.9472 | | 0.1305 | 6.0 | 2862 | 0.1736 | 0.7209 | 0.8228 | 0.7685 | 0.9483 | | 0.1116 | 7.0 | 3339 | 0.1621 | 0.7337 | 0.8296 | 0.7787 | 0.9518 | | 0.099 | 8.0 | 3816 | 0.1684 | 0.7353 | 0.8318 | 0.7806 | 0.9508 | | 0.0882 | 9.0 | 4293 | 0.1666 | 0.7625 | 0.8417 | 0.8002 | 0.9547 | | 0.0799 | 10.0 | 4770 | 0.1674 | 0.7560 | 0.8395 | 0.7955 | 0.9540 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3