Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import safetensors
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import soundfile as sf
|
6 |
+
import os
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
from models.codec.kmeans.repcodec_model import RepCodec
|
11 |
+
from models.tts.maskgct.maskgct_s2a import MaskGCT_S2A
|
12 |
+
from models.tts.maskgct.maskgct_t2s import MaskGCT_T2S
|
13 |
+
from models.codec.amphion_codec.codec import CodecEncoder, CodecDecoder
|
14 |
+
from transformers import Wav2Vec2BertModel
|
15 |
+
from utils.util import load_config
|
16 |
+
from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p
|
17 |
+
|
18 |
+
from transformers import SeamlessM4TFeatureExtractor
|
19 |
+
|
20 |
+
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
21 |
+
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
|
24 |
+
|
25 |
+
def g2p_(text, language):
|
26 |
+
if language in ["zh", "en"]:
|
27 |
+
return chn_eng_g2p(text)
|
28 |
+
else:
|
29 |
+
return g2p(text, sentence=None, language=language)
|
30 |
+
|
31 |
+
|
32 |
+
def build_t2s_model(cfg, device):
|
33 |
+
t2s_model = MaskGCT_T2S(cfg=cfg)
|
34 |
+
t2s_model.eval()
|
35 |
+
t2s_model.to(device)
|
36 |
+
return t2s_model
|
37 |
+
|
38 |
+
|
39 |
+
def build_s2a_model(cfg, device):
|
40 |
+
soundstorm_model = MaskGCT_S2A(cfg=cfg)
|
41 |
+
soundstorm_model.eval()
|
42 |
+
soundstorm_model.to(device)
|
43 |
+
return soundstorm_model
|
44 |
+
|
45 |
+
|
46 |
+
def build_semantic_model(device):
|
47 |
+
semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
|
48 |
+
semantic_model.eval()
|
49 |
+
semantic_model.to(device)
|
50 |
+
stat_mean_var = torch.load("./models/tts/maskgct/ckpt/wav2vec2bert_stats.pt")
|
51 |
+
semantic_mean = stat_mean_var["mean"]
|
52 |
+
semantic_std = torch.sqrt(stat_mean_var["var"])
|
53 |
+
semantic_mean = semantic_mean.to(device)
|
54 |
+
semantic_std = semantic_std.to(device)
|
55 |
+
return semantic_model, semantic_mean, semantic_std
|
56 |
+
|
57 |
+
|
58 |
+
def build_semantic_codec(cfg, device):
|
59 |
+
semantic_codec = RepCodec(cfg=cfg)
|
60 |
+
semantic_codec.eval()
|
61 |
+
semantic_codec.to(device)
|
62 |
+
return semantic_codec
|
63 |
+
|
64 |
+
|
65 |
+
def build_acoustic_codec(cfg, device):
|
66 |
+
codec_encoder = CodecEncoder(cfg=cfg.encoder)
|
67 |
+
codec_decoder = CodecDecoder(cfg=cfg.decoder)
|
68 |
+
codec_encoder.eval()
|
69 |
+
codec_decoder.eval()
|
70 |
+
codec_encoder.to(device)
|
71 |
+
codec_decoder.to(device)
|
72 |
+
return codec_encoder, codec_decoder
|
73 |
+
|
74 |
+
|
75 |
+
@torch.no_grad()
|
76 |
+
def extract_features(speech, processor):
|
77 |
+
inputs = processor(speech, sampling_rate=16000, return_tensors="pt")
|
78 |
+
input_features = inputs["input_features"][0]
|
79 |
+
attention_mask = inputs["attention_mask"][0]
|
80 |
+
return input_features, attention_mask
|
81 |
+
|
82 |
+
|
83 |
+
@torch.no_grad()
|
84 |
+
def extract_semantic_code(semantic_mean, semantic_std, input_features, attention_mask):
|
85 |
+
vq_emb = semantic_model(
|
86 |
+
input_features=input_features,
|
87 |
+
attention_mask=attention_mask,
|
88 |
+
output_hidden_states=True,
|
89 |
+
)
|
90 |
+
feat = vq_emb.hidden_states[17] # (B, T, C)
|
91 |
+
feat = (feat - semantic_mean.to(feat)) / semantic_std.to(feat)
|
92 |
+
|
93 |
+
semantic_code, rec_feat = semantic_codec.quantize(feat) # (B, T)
|
94 |
+
return semantic_code, rec_feat
|
95 |
+
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
def extract_acoustic_code(speech):
|
99 |
+
vq_emb = codec_encoder(speech.unsqueeze(1))
|
100 |
+
_, vq, _, _, _ = codec_decoder.quantizer(vq_emb)
|
101 |
+
acoustic_code = vq.permute(1, 2, 0)
|
102 |
+
return acoustic_code
|
103 |
+
|
104 |
+
|
105 |
+
@torch.no_grad()
|
106 |
+
def text2semantic(
|
107 |
+
device,
|
108 |
+
prompt_speech,
|
109 |
+
prompt_text,
|
110 |
+
prompt_language,
|
111 |
+
target_text,
|
112 |
+
target_language,
|
113 |
+
target_len=None,
|
114 |
+
n_timesteps=50,
|
115 |
+
cfg=2.5,
|
116 |
+
rescale_cfg=0.75,
|
117 |
+
):
|
118 |
+
|
119 |
+
prompt_phone_id = g2p_(prompt_text, prompt_language)[1]
|
120 |
+
|
121 |
+
target_phone_id = g2p_(target_text, target_language)[1]
|
122 |
+
|
123 |
+
if target_len is None:
|
124 |
+
target_len = int(
|
125 |
+
(len(prompt_speech) * len(target_phone_id) / len(prompt_phone_id))
|
126 |
+
/ 16000
|
127 |
+
* 50
|
128 |
+
)
|
129 |
+
else:
|
130 |
+
target_len = int(target_len * 50)
|
131 |
+
|
132 |
+
prompt_phone_id = torch.tensor(prompt_phone_id, dtype=torch.long).to(device)
|
133 |
+
target_phone_id = torch.tensor(target_phone_id, dtype=torch.long).to(device)
|
134 |
+
|
135 |
+
phone_id = torch.cat([prompt_phone_id, target_phone_id])
|
136 |
+
|
137 |
+
input_fetures, attention_mask = extract_features(prompt_speech, processor)
|
138 |
+
input_fetures = input_fetures.unsqueeze(0).to(device)
|
139 |
+
attention_mask = attention_mask.unsqueeze(0).to(device)
|
140 |
+
semantic_code, _ = extract_semantic_code(
|
141 |
+
semantic_mean, semantic_std, input_fetures, attention_mask
|
142 |
+
)
|
143 |
+
|
144 |
+
predict_semantic = t2s_model.reverse_diffusion(
|
145 |
+
semantic_code[:, :],
|
146 |
+
target_len,
|
147 |
+
phone_id.unsqueeze(0),
|
148 |
+
n_timesteps=n_timesteps,
|
149 |
+
cfg=cfg,
|
150 |
+
rescale_cfg=rescale_cfg,
|
151 |
+
)
|
152 |
+
|
153 |
+
combine_semantic_code = torch.cat([semantic_code[:, :], predict_semantic], dim=-1)
|
154 |
+
prompt_semantic_code = semantic_code
|
155 |
+
|
156 |
+
return combine_semantic_code, prompt_semantic_code
|
157 |
+
|
158 |
+
|
159 |
+
@torch.no_grad()
|
160 |
+
def semantic2acoustic(
|
161 |
+
device,
|
162 |
+
combine_semantic_code,
|
163 |
+
acoustic_code,
|
164 |
+
n_timesteps=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
165 |
+
cfg=2.5,
|
166 |
+
rescale_cfg=0.75,
|
167 |
+
):
|
168 |
+
|
169 |
+
semantic_code = combine_semantic_code
|
170 |
+
|
171 |
+
cond = s2a_model_1layer.cond_emb(semantic_code)
|
172 |
+
prompt = acoustic_code[:, :, :]
|
173 |
+
predict_1layer = s2a_model_1layer.reverse_diffusion(
|
174 |
+
cond=cond,
|
175 |
+
prompt=prompt,
|
176 |
+
temp=1.5,
|
177 |
+
filter_thres=0.98,
|
178 |
+
n_timesteps=n_timesteps[:1],
|
179 |
+
cfg=cfg,
|
180 |
+
rescale_cfg=rescale_cfg,
|
181 |
+
)
|
182 |
+
|
183 |
+
cond = s2a_model_full.cond_emb(semantic_code)
|
184 |
+
prompt = acoustic_code[:, :, :]
|
185 |
+
predict_full = s2a_model_full.reverse_diffusion(
|
186 |
+
cond=cond,
|
187 |
+
prompt=prompt,
|
188 |
+
temp=1.5,
|
189 |
+
filter_thres=0.98,
|
190 |
+
n_timesteps=n_timesteps,
|
191 |
+
cfg=cfg,
|
192 |
+
rescale_cfg=rescale_cfg,
|
193 |
+
gt_code=predict_1layer,
|
194 |
+
)
|
195 |
+
|
196 |
+
vq_emb = codec_decoder.vq2emb(predict_full.permute(2, 0, 1), n_quantizers=12)
|
197 |
+
recovered_audio = codec_decoder(vq_emb)
|
198 |
+
prompt_vq_emb = codec_decoder.vq2emb(prompt.permute(2, 0, 1), n_quantizers=12)
|
199 |
+
recovered_prompt_audio = codec_decoder(prompt_vq_emb)
|
200 |
+
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy()
|
201 |
+
recovered_audio = recovered_audio[0][0].cpu().numpy()
|
202 |
+
combine_audio = np.concatenate([recovered_prompt_audio, recovered_audio])
|
203 |
+
|
204 |
+
return combine_audio, recovered_audio
|
205 |
+
|
206 |
+
|
207 |
+
# Load the model and checkpoints
|
208 |
+
def load_models():
|
209 |
+
cfg_path = "./models/tts/maskgct/config/maskgct.json"
|
210 |
+
|
211 |
+
cfg = load_config(cfg_path)
|
212 |
+
semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
|
213 |
+
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
|
214 |
+
codec_encoder, codec_decoder = build_acoustic_codec(
|
215 |
+
cfg.model.acoustic_codec, device
|
216 |
+
)
|
217 |
+
t2s_model = build_t2s_model(cfg.model.t2s_model, device)
|
218 |
+
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
|
219 |
+
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
|
220 |
+
|
221 |
+
# Download checkpoints
|
222 |
+
semantic_code_ckpt = hf_hub_download(
|
223 |
+
"amphion/MaskGCT", filename="semantic_codec/model.safetensors"
|
224 |
+
)
|
225 |
+
codec_encoder_ckpt = hf_hub_download(
|
226 |
+
"amphion/MaskGCT", filename="acoustic_codec/model.safetensors"
|
227 |
+
)
|
228 |
+
codec_decoder_ckpt = hf_hub_download(
|
229 |
+
"amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors"
|
230 |
+
)
|
231 |
+
t2s_model_ckpt = hf_hub_download(
|
232 |
+
"amphion/MaskGCT", filename="t2s_model/model.safetensors"
|
233 |
+
)
|
234 |
+
s2a_1layer_ckpt = hf_hub_download(
|
235 |
+
"amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors"
|
236 |
+
)
|
237 |
+
s2a_full_ckpt = hf_hub_download(
|
238 |
+
"amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors"
|
239 |
+
)
|
240 |
+
|
241 |
+
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
|
242 |
+
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
|
243 |
+
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
|
244 |
+
safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
|
245 |
+
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
|
246 |
+
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
|
247 |
+
|
248 |
+
return (
|
249 |
+
semantic_model,
|
250 |
+
semantic_mean,
|
251 |
+
semantic_std,
|
252 |
+
semantic_codec,
|
253 |
+
codec_encoder,
|
254 |
+
codec_decoder,
|
255 |
+
t2s_model,
|
256 |
+
s2a_model_1layer,
|
257 |
+
s2a_model_full,
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
@torch.no_grad()
|
262 |
+
def maskgct_inference(
|
263 |
+
prompt_speech_path,
|
264 |
+
prompt_text,
|
265 |
+
target_text,
|
266 |
+
language="en",
|
267 |
+
target_language="en",
|
268 |
+
target_len=None,
|
269 |
+
n_timesteps=25,
|
270 |
+
cfg=2.5,
|
271 |
+
rescale_cfg=0.75,
|
272 |
+
n_timesteps_s2a=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
273 |
+
cfg_s2a=2.5,
|
274 |
+
rescale_cfg_s2a=0.75,
|
275 |
+
device=torch.device("cuda:5"),
|
276 |
+
):
|
277 |
+
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
|
278 |
+
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
279 |
+
|
280 |
+
combine_semantic_code, _ = text2semantic(
|
281 |
+
device,
|
282 |
+
speech_16k,
|
283 |
+
prompt_text,
|
284 |
+
language,
|
285 |
+
target_text,
|
286 |
+
target_language,
|
287 |
+
target_len,
|
288 |
+
n_timesteps,
|
289 |
+
cfg,
|
290 |
+
rescale_cfg,
|
291 |
+
)
|
292 |
+
acoustic_code = extract_acoustic_code(torch.tensor(speech).unsqueeze(0).to(device))
|
293 |
+
_, recovered_audio = semantic2acoustic(
|
294 |
+
device,
|
295 |
+
combine_semantic_code,
|
296 |
+
acoustic_code,
|
297 |
+
n_timesteps=n_timesteps_s2a,
|
298 |
+
cfg=cfg_s2a,
|
299 |
+
rescale_cfg=rescale_cfg_s2a,
|
300 |
+
)
|
301 |
+
|
302 |
+
return recovered_audio
|
303 |
+
|
304 |
+
|
305 |
+
@torch.no_grad()
|
306 |
+
def inference(
|
307 |
+
prompt_wav,
|
308 |
+
prompt_text,
|
309 |
+
target_text,
|
310 |
+
target_len,
|
311 |
+
n_timesteps,
|
312 |
+
language,
|
313 |
+
target_language,
|
314 |
+
):
|
315 |
+
save_path = "./output/output.wav"
|
316 |
+
os.makedirs("./output", exist_ok=True)
|
317 |
+
recovered_audio = maskgct_inference(
|
318 |
+
prompt_wav,
|
319 |
+
prompt_text,
|
320 |
+
target_text,
|
321 |
+
language,
|
322 |
+
target_language,
|
323 |
+
target_len=target_len,
|
324 |
+
n_timesteps=int(n_timesteps),
|
325 |
+
device=device,
|
326 |
+
)
|
327 |
+
sf.write(save_path, recovered_audio, 24000)
|
328 |
+
return save_path
|
329 |
+
|
330 |
+
# Load models once
|
331 |
+
(
|
332 |
+
semantic_model,
|
333 |
+
semantic_mean,
|
334 |
+
semantic_std,
|
335 |
+
semantic_codec,
|
336 |
+
codec_encoder,
|
337 |
+
codec_decoder,
|
338 |
+
t2s_model,
|
339 |
+
s2a_model_1layer,
|
340 |
+
s2a_model_full,
|
341 |
+
) = load_models()
|
342 |
+
|
343 |
+
# Language list
|
344 |
+
language_list = ["en", "zh", "ja", "ko", "fr", "de"]
|
345 |
+
|
346 |
+
# Gradio interface
|
347 |
+
iface = gr.Interface(
|
348 |
+
fn=inference,
|
349 |
+
inputs=[
|
350 |
+
gr.Audio(label="Upload Prompt Wav", type="filepath"),
|
351 |
+
gr.Textbox(label="Prompt Text"),
|
352 |
+
gr.Textbox(label="Target Text"),
|
353 |
+
gr.Number(
|
354 |
+
label="Target Duration (in seconds)", value=None
|
355 |
+
), # Removed 'optional=True'
|
356 |
+
gr.Slider(
|
357 |
+
label="Number of Timesteps", minimum=15, maximum=100, value=25, step=1
|
358 |
+
),
|
359 |
+
gr.Dropdown(label="Language", choices=language_list, value="en"),
|
360 |
+
gr.Dropdown(label="Target Language", choices=language_list, value="en"),
|
361 |
+
],
|
362 |
+
outputs=gr.Audio(label="Generated Audio"),
|
363 |
+
title="MaskGCT TTS Demo",
|
364 |
+
description="Generate speech from text using the MaskGCT model.",
|
365 |
+
)
|
366 |
+
|
367 |
+
# Launch the interface
|
368 |
+
iface.launch(allowed_paths=["./output"])
|