--- license: cc-by-nc-4.0 language: - nl tags: - gguf - llamacpp - dpo - geitje - conversational datasets: - BramVanroy/ultra_feedback_dutch ---

GEITje Ultra banner

GEITje 7B ultra (GGUF version)

A conversational model for Dutch, aligned through AI feedback.
This is a `Q5_K_M` GGUF version of [BramVanroy/GEITje-7B-ultra](https://huggingface.co/BramVanroy/GEITje-7B-ultra), a powerful Dutch chatbot, which ultimately is Mistral-based model, further pretrained on Dutch and additionally treated with supervised-finetuning and DPO alignment. For more information on the model, data, licensing, usage, see the main model's README. ## Usage ### LM Studio You can use this model in [LM Studio](https://lmstudio.ai/), an easy-to-use interface to locally run optimized models. Simply search for `BramVanroy/GEITje-7B-ultra-GGUF`, and download the available file. ### Ollama The model is available on `ollama` and can be easily run as follows: ```shell ollama run bramvanroy/geitje-7b-ultra-gguf ``` To reproduce, i.e. to create the ollama files manually instead of downloading them via ollama, follow the next steps. First download the [GGUF file](https://huggingface.co/BramVanroy/GEITje-7B-ultra-GGUF/resolve/main/GEITje-7B-ultra-Q5_K_M.gguf?download=true) and [Modelfile](https://huggingface.co/BramVanroy/GEITje-7B-ultra-GGUF/resolve/main/Modelfile?download=true) to your computer. You can adapt the Modelfile as you wish. Then, create the ollama model and run it. ```shelll ollama create geitje-7b-ultra-gguf -f ./Modelfile ollama run geitje-7b-ultra-gguf ``` ## Reproduce this GGUF version from the non-quantized model Assuming you have installed and build llama cpp, current working directory is the `build` directory in llamacpp. Download initial model (probaby a huggingface-cli alternative exists, too...) ```python from huggingface_hub import snapshot_download model_id = "BramVanroy/GEITje-7B-ultra" snapshot_download(repo_id=model_id, local_dir="geitje-ultra-hf", local_dir_use_symlinks=False) ``` Convert to GGML format ```shell # Convert to GGML format python convert.py build/geitje-ultra-hf/ cd build # Quantize to Q5_K_M bin/quantize geitje-ultra-hf/ggml-model-f32.gguf geitje-ultra-hf/GEITje-7B-ultra-Q5_K_M.gguf Q5_K_M ```