File size: 5,134 Bytes
45e8d35
 
f6bf5f5
 
 
45e8d35
 
f6bf5f5
45e8d35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: facebook/mbart-large-cc25
language:
- nl
- es
---

# ES and NL to AMR parsing

This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6542
- Smatch Precision: 73.41
- Smatch Recall: 76.04
- Smatch Fscore: 74.7
- Smatch Unparsable: 0
- Percent Not Recoverable: 0.2613

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable |
|:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:|
| 0.2675        | 1.0   | 6954   | 1.3790          | 23.26            | 65.74         | 34.36         | 0                 | 0.0                     |
| 0.1137        | 2.0   | 13908  | 1.0480          | 32.79            | 71.81         | 45.02         | 0                 | 0.0                     |
| 0.1606        | 3.0   | 20862  | 0.8573          | 38.99            | 72.53         | 50.72         | 0                 | 0.0581                  |
| 0.0923        | 4.0   | 27817  | 0.7614          | 40.4             | 75.22         | 52.56         | 0                 | 0.0290                  |
| 0.0292        | 5.0   | 34771  | 0.7935          | 46.44            | 75.63         | 57.54         | 0                 | 0.0290                  |
| 0.0106        | 6.0   | 41725  | 0.7326          | 49.54            | 75.8          | 59.92         | 0                 | 0.0                     |
| 0.0054        | 7.0   | 48679  | 0.6385          | 51.35            | 76.11         | 61.33         | 0                 | 0.0290                  |
| 0.048         | 8.0   | 55634  | 0.6489          | 53.03            | 76.79         | 62.74         | 0                 | 0.0581                  |
| 0.0334        | 9.0   | 62588  | 0.6128          | 59.05            | 77.3          | 66.95         | 0                 | 0.0581                  |
| 0.0393        | 10.0  | 69542  | 0.6242          | 57.91            | 77.02         | 66.11         | 0                 | 0.0871                  |
| 0.0251        | 11.0  | 76496  | 0.6417          | 58.46            | 77.31         | 66.58         | 0                 | 0.1742                  |
| 0.0035        | 12.0  | 83451  | 0.6271          | 62.28            | 76.99         | 68.86         | 0                 | 0.0581                  |
| 0.0228        | 13.0  | 90405  | 0.6685          | 62.47            | 76.97         | 68.97         | 0                 | 0.1452                  |
| 0.0119        | 14.0  | 97359  | 0.6414          | 63.12            | 77.23         | 69.47         | 0                 | 0.1161                  |
| 0.0066        | 15.0  | 104313 | 0.6515          | 65.63            | 77.02         | 70.87         | 0                 | 0.0871                  |
| 0.0025        | 16.0  | 111268 | 0.6467          | 67.05            | 77.35         | 71.83         | 0                 | 0.0871                  |
| 0.0024        | 17.0  | 118222 | 0.6657          | 65.47            | 77.13         | 70.82         | 0                 | 0.0581                  |
| 0.0223        | 18.0  | 125176 | 0.6754          | 67.56            | 77.21         | 72.06         | 0                 | 0.1452                  |
| 0.034         | 19.0  | 132130 | 0.6569          | 68.47            | 76.97         | 72.47         | 0                 | 0.1161                  |
| 0.007         | 20.0  | 139085 | 0.6734          | 69.86            | 77.17         | 73.34         | 0                 | 0.2033                  |
| 0.0224        | 21.0  | 146039 | 0.6544          | 70.95            | 76.72         | 73.72         | 0                 | 0.1742                  |
| 0.005         | 22.0  | 152993 | 0.6619          | 72.18            | 76.83         | 74.43         | 0                 | 0.1742                  |
| 0.0055        | 23.0  | 159947 | 0.6683          | 72.21            | 76.42         | 74.26         | 0                 | 0.2323                  |
| 0.0           | 24.0  | 166902 | 0.6585          | 72.8             | 76.3          | 74.51         | 0                 | 0.2033                  |
| 0.0693        | 25.0  | 173850 | 0.6542          | 73.41            | 76.04         | 74.7          | 0                 | 0.2613                  |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3