--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT_test_graident_accumulation_test3_finetuned results: [] --- # BERT_test_graident_accumulation_test3_finetuned This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8880 - Accuracy: 0.6140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 24 | 0.8680 | 0.6190 | | No log | 1.97 | 49 | 0.8866 | 0.6165 | | No log | 2.89 | 72 | 0.8880 | 0.6140 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0