Brumocas commited on
Commit
a4e3930
1 Parent(s): 0853818

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1731085137.2e80709e60cc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61d69fd12dc6614d0aa54ef78ef855be902d51719a8dbf3ac7586219e9ab9376
3
+ size 200281
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 9.03 +/- 4.65
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 10.08 +/- 4.73
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/checkpoint_000001170_4792320.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8bf8d1953200f4c9b03df6e83983ff09743018846a6007ee0d507d26be1a875
3
+ size 34929669
checkpoint_p0/checkpoint_000001222_5005312.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2ab85adabc87a4269b7da336d2ef818960fbd2c72d3b8644025874330c6a9b5
3
+ size 34929669
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 4000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 5000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:40d2dfc2b2026208e5d369ded478a5f88cd663281b01e1f3e25784057ed1725a
3
- size 17681182
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc1a72d522d85f73e4290d12f99e9495540acc81138f66808c80f1ecdf639b96
3
+ size 18474932
sf_log.txt CHANGED
@@ -1215,3 +1215,831 @@ main_loop: 1093.0430
1215
  [2024-11-08 16:55:52,702][00398] Avg episode rewards: #0: 21.129, true rewards: #0: 9.029
1216
  [2024-11-08 16:55:52,704][00398] Avg episode reward: 21.129, avg true_objective: 9.029
1217
  [2024-11-08 16:56:46,049][00398] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215
  [2024-11-08 16:55:52,702][00398] Avg episode rewards: #0: 21.129, true rewards: #0: 9.029
1216
  [2024-11-08 16:55:52,704][00398] Avg episode reward: 21.129, avg true_objective: 9.029
1217
  [2024-11-08 16:56:46,049][00398] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1218
+ [2024-11-08 16:56:50,249][00398] The model has been pushed to https://huggingface.co/Brumocas/rl_course_vizdoom_health_gathering_supreme
1219
+ [2024-11-08 16:58:57,579][00398] Environment doom_basic already registered, overwriting...
1220
+ [2024-11-08 16:58:57,581][00398] Environment doom_two_colors_easy already registered, overwriting...
1221
+ [2024-11-08 16:58:57,583][00398] Environment doom_two_colors_hard already registered, overwriting...
1222
+ [2024-11-08 16:58:57,585][00398] Environment doom_dm already registered, overwriting...
1223
+ [2024-11-08 16:58:57,588][00398] Environment doom_dwango5 already registered, overwriting...
1224
+ [2024-11-08 16:58:57,588][00398] Environment doom_my_way_home_flat_actions already registered, overwriting...
1225
+ [2024-11-08 16:58:57,589][00398] Environment doom_defend_the_center_flat_actions already registered, overwriting...
1226
+ [2024-11-08 16:58:57,590][00398] Environment doom_my_way_home already registered, overwriting...
1227
+ [2024-11-08 16:58:57,591][00398] Environment doom_deadly_corridor already registered, overwriting...
1228
+ [2024-11-08 16:58:57,592][00398] Environment doom_defend_the_center already registered, overwriting...
1229
+ [2024-11-08 16:58:57,593][00398] Environment doom_defend_the_line already registered, overwriting...
1230
+ [2024-11-08 16:58:57,595][00398] Environment doom_health_gathering already registered, overwriting...
1231
+ [2024-11-08 16:58:57,596][00398] Environment doom_health_gathering_supreme already registered, overwriting...
1232
+ [2024-11-08 16:58:57,597][00398] Environment doom_battle already registered, overwriting...
1233
+ [2024-11-08 16:58:57,598][00398] Environment doom_battle2 already registered, overwriting...
1234
+ [2024-11-08 16:58:57,599][00398] Environment doom_duel_bots already registered, overwriting...
1235
+ [2024-11-08 16:58:57,600][00398] Environment doom_deathmatch_bots already registered, overwriting...
1236
+ [2024-11-08 16:58:57,601][00398] Environment doom_duel already registered, overwriting...
1237
+ [2024-11-08 16:58:57,603][00398] Environment doom_deathmatch_full already registered, overwriting...
1238
+ [2024-11-08 16:58:57,604][00398] Environment doom_benchmark already registered, overwriting...
1239
+ [2024-11-08 16:58:57,605][00398] register_encoder_factory: <function make_vizdoom_encoder at 0x794ae9392320>
1240
+ [2024-11-08 16:58:57,628][00398] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1241
+ [2024-11-08 16:58:57,629][00398] Overriding arg 'train_for_env_steps' with value 5000000 passed from command line
1242
+ [2024-11-08 16:58:57,641][00398] Experiment dir /content/train_dir/default_experiment already exists!
1243
+ [2024-11-08 16:58:57,643][00398] Resuming existing experiment from /content/train_dir/default_experiment...
1244
+ [2024-11-08 16:58:57,645][00398] Weights and Biases integration disabled
1245
+ [2024-11-08 16:58:57,648][00398] Environment var CUDA_VISIBLE_DEVICES is 0
1246
+
1247
+ [2024-11-08 16:59:00,305][00398] Starting experiment with the following configuration:
1248
+ help=False
1249
+ algo=APPO
1250
+ env=doom_health_gathering_supreme
1251
+ experiment=default_experiment
1252
+ train_dir=/content/train_dir
1253
+ restart_behavior=resume
1254
+ device=gpu
1255
+ seed=None
1256
+ num_policies=1
1257
+ async_rl=True
1258
+ serial_mode=False
1259
+ batched_sampling=False
1260
+ num_batches_to_accumulate=2
1261
+ worker_num_splits=2
1262
+ policy_workers_per_policy=1
1263
+ max_policy_lag=1000
1264
+ num_workers=8
1265
+ num_envs_per_worker=4
1266
+ batch_size=1024
1267
+ num_batches_per_epoch=1
1268
+ num_epochs=1
1269
+ rollout=32
1270
+ recurrence=32
1271
+ shuffle_minibatches=False
1272
+ gamma=0.99
1273
+ reward_scale=1.0
1274
+ reward_clip=1000.0
1275
+ value_bootstrap=False
1276
+ normalize_returns=True
1277
+ exploration_loss_coeff=0.001
1278
+ value_loss_coeff=0.5
1279
+ kl_loss_coeff=0.0
1280
+ exploration_loss=symmetric_kl
1281
+ gae_lambda=0.95
1282
+ ppo_clip_ratio=0.1
1283
+ ppo_clip_value=0.2
1284
+ with_vtrace=False
1285
+ vtrace_rho=1.0
1286
+ vtrace_c=1.0
1287
+ optimizer=adam
1288
+ adam_eps=1e-06
1289
+ adam_beta1=0.9
1290
+ adam_beta2=0.999
1291
+ max_grad_norm=4.0
1292
+ learning_rate=0.0001
1293
+ lr_schedule=constant
1294
+ lr_schedule_kl_threshold=0.008
1295
+ lr_adaptive_min=1e-06
1296
+ lr_adaptive_max=0.01
1297
+ obs_subtract_mean=0.0
1298
+ obs_scale=255.0
1299
+ normalize_input=True
1300
+ normalize_input_keys=None
1301
+ decorrelate_experience_max_seconds=0
1302
+ decorrelate_envs_on_one_worker=True
1303
+ actor_worker_gpus=[]
1304
+ set_workers_cpu_affinity=True
1305
+ force_envs_single_thread=False
1306
+ default_niceness=0
1307
+ log_to_file=True
1308
+ experiment_summaries_interval=10
1309
+ flush_summaries_interval=30
1310
+ stats_avg=100
1311
+ summaries_use_frameskip=True
1312
+ heartbeat_interval=20
1313
+ heartbeat_reporting_interval=600
1314
+ train_for_env_steps=5000000
1315
+ train_for_seconds=10000000000
1316
+ save_every_sec=120
1317
+ keep_checkpoints=2
1318
+ load_checkpoint_kind=latest
1319
+ save_milestones_sec=-1
1320
+ save_best_every_sec=5
1321
+ save_best_metric=reward
1322
+ save_best_after=100000
1323
+ benchmark=False
1324
+ encoder_mlp_layers=[512, 512]
1325
+ encoder_conv_architecture=convnet_simple
1326
+ encoder_conv_mlp_layers=[512]
1327
+ use_rnn=True
1328
+ rnn_size=512
1329
+ rnn_type=gru
1330
+ rnn_num_layers=1
1331
+ decoder_mlp_layers=[]
1332
+ nonlinearity=elu
1333
+ policy_initialization=orthogonal
1334
+ policy_init_gain=1.0
1335
+ actor_critic_share_weights=True
1336
+ adaptive_stddev=True
1337
+ continuous_tanh_scale=0.0
1338
+ initial_stddev=1.0
1339
+ use_env_info_cache=False
1340
+ env_gpu_actions=False
1341
+ env_gpu_observations=True
1342
+ env_frameskip=4
1343
+ env_framestack=1
1344
+ pixel_format=CHW
1345
+ use_record_episode_statistics=False
1346
+ with_wandb=False
1347
+ wandb_user=None
1348
+ wandb_project=sample_factory
1349
+ wandb_group=None
1350
+ wandb_job_type=SF
1351
+ wandb_tags=[]
1352
+ with_pbt=False
1353
+ pbt_mix_policies_in_one_env=True
1354
+ pbt_period_env_steps=5000000
1355
+ pbt_start_mutation=20000000
1356
+ pbt_replace_fraction=0.3
1357
+ pbt_mutation_rate=0.15
1358
+ pbt_replace_reward_gap=0.1
1359
+ pbt_replace_reward_gap_absolute=1e-06
1360
+ pbt_optimize_gamma=False
1361
+ pbt_target_objective=true_objective
1362
+ pbt_perturb_min=1.1
1363
+ pbt_perturb_max=1.5
1364
+ num_agents=-1
1365
+ num_humans=0
1366
+ num_bots=-1
1367
+ start_bot_difficulty=None
1368
+ timelimit=None
1369
+ res_w=128
1370
+ res_h=72
1371
+ wide_aspect_ratio=False
1372
+ eval_env_frameskip=1
1373
+ fps=35
1374
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
1375
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
1376
+ git_hash=unknown
1377
+ git_repo_name=not a git repository
1378
+ [2024-11-08 16:59:00,308][00398] Saving configuration to /content/train_dir/default_experiment/config.json...
1379
+ [2024-11-08 16:59:00,312][00398] Rollout worker 0 uses device cpu
1380
+ [2024-11-08 16:59:00,314][00398] Rollout worker 1 uses device cpu
1381
+ [2024-11-08 16:59:00,316][00398] Rollout worker 2 uses device cpu
1382
+ [2024-11-08 16:59:00,317][00398] Rollout worker 3 uses device cpu
1383
+ [2024-11-08 16:59:00,318][00398] Rollout worker 4 uses device cpu
1384
+ [2024-11-08 16:59:00,319][00398] Rollout worker 5 uses device cpu
1385
+ [2024-11-08 16:59:00,320][00398] Rollout worker 6 uses device cpu
1386
+ [2024-11-08 16:59:00,321][00398] Rollout worker 7 uses device cpu
1387
+ [2024-11-08 16:59:00,396][00398] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1388
+ [2024-11-08 16:59:00,398][00398] InferenceWorker_p0-w0: min num requests: 2
1389
+ [2024-11-08 16:59:00,430][00398] Starting all processes...
1390
+ [2024-11-08 16:59:00,431][00398] Starting process learner_proc0
1391
+ [2024-11-08 16:59:00,480][00398] Starting all processes...
1392
+ [2024-11-08 16:59:00,486][00398] Starting process inference_proc0-0
1393
+ [2024-11-08 16:59:00,486][00398] Starting process rollout_proc0
1394
+ [2024-11-08 16:59:00,488][00398] Starting process rollout_proc1
1395
+ [2024-11-08 16:59:00,488][00398] Starting process rollout_proc2
1396
+ [2024-11-08 16:59:00,488][00398] Starting process rollout_proc3
1397
+ [2024-11-08 16:59:00,488][00398] Starting process rollout_proc4
1398
+ [2024-11-08 16:59:00,488][00398] Starting process rollout_proc5
1399
+ [2024-11-08 16:59:00,488][00398] Starting process rollout_proc6
1400
+ [2024-11-08 16:59:00,488][00398] Starting process rollout_proc7
1401
+ [2024-11-08 16:59:17,014][17017] Worker 4 uses CPU cores [0]
1402
+ [2024-11-08 16:59:17,424][17014] Worker 2 uses CPU cores [0]
1403
+ [2024-11-08 16:59:17,600][16998] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1404
+ [2024-11-08 16:59:17,601][16998] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
1405
+ [2024-11-08 16:59:17,607][17013] Worker 1 uses CPU cores [1]
1406
+ [2024-11-08 16:59:17,635][16998] Num visible devices: 1
1407
+ [2024-11-08 16:59:17,656][16998] Starting seed is not provided
1408
+ [2024-11-08 16:59:17,657][16998] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1409
+ [2024-11-08 16:59:17,658][16998] Initializing actor-critic model on device cuda:0
1410
+ [2024-11-08 16:59:17,659][16998] RunningMeanStd input shape: (3, 72, 128)
1411
+ [2024-11-08 16:59:17,660][16998] RunningMeanStd input shape: (1,)
1412
+ [2024-11-08 16:59:17,686][17015] Worker 3 uses CPU cores [1]
1413
+ [2024-11-08 16:59:17,693][17011] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1414
+ [2024-11-08 16:59:17,693][17011] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
1415
+ [2024-11-08 16:59:17,702][16998] ConvEncoder: input_channels=3
1416
+ [2024-11-08 16:59:17,745][17018] Worker 5 uses CPU cores [1]
1417
+ [2024-11-08 16:59:17,770][17019] Worker 7 uses CPU cores [1]
1418
+ [2024-11-08 16:59:17,773][17016] Worker 6 uses CPU cores [0]
1419
+ [2024-11-08 16:59:17,776][17011] Num visible devices: 1
1420
+ [2024-11-08 16:59:17,789][17012] Worker 0 uses CPU cores [0]
1421
+ [2024-11-08 16:59:17,871][16998] Conv encoder output size: 512
1422
+ [2024-11-08 16:59:17,871][16998] Policy head output size: 512
1423
+ [2024-11-08 16:59:17,893][16998] Created Actor Critic model with architecture:
1424
+ [2024-11-08 16:59:17,894][16998] ActorCriticSharedWeights(
1425
+ (obs_normalizer): ObservationNormalizer(
1426
+ (running_mean_std): RunningMeanStdDictInPlace(
1427
+ (running_mean_std): ModuleDict(
1428
+ (obs): RunningMeanStdInPlace()
1429
+ )
1430
+ )
1431
+ )
1432
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
1433
+ (encoder): VizdoomEncoder(
1434
+ (basic_encoder): ConvEncoder(
1435
+ (enc): RecursiveScriptModule(
1436
+ original_name=ConvEncoderImpl
1437
+ (conv_head): RecursiveScriptModule(
1438
+ original_name=Sequential
1439
+ (0): RecursiveScriptModule(original_name=Conv2d)
1440
+ (1): RecursiveScriptModule(original_name=ELU)
1441
+ (2): RecursiveScriptModule(original_name=Conv2d)
1442
+ (3): RecursiveScriptModule(original_name=ELU)
1443
+ (4): RecursiveScriptModule(original_name=Conv2d)
1444
+ (5): RecursiveScriptModule(original_name=ELU)
1445
+ )
1446
+ (mlp_layers): RecursiveScriptModule(
1447
+ original_name=Sequential
1448
+ (0): RecursiveScriptModule(original_name=Linear)
1449
+ (1): RecursiveScriptModule(original_name=ELU)
1450
+ )
1451
+ )
1452
+ )
1453
+ )
1454
+ (core): ModelCoreRNN(
1455
+ (core): GRU(512, 512)
1456
+ )
1457
+ (decoder): MlpDecoder(
1458
+ (mlp): Identity()
1459
+ )
1460
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
1461
+ (action_parameterization): ActionParameterizationDefault(
1462
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
1463
+ )
1464
+ )
1465
+ [2024-11-08 16:59:18,040][16998] Using optimizer <class 'torch.optim.adam.Adam'>
1466
+ [2024-11-08 16:59:18,862][16998] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1467
+ [2024-11-08 16:59:18,899][16998] Loading model from checkpoint
1468
+ [2024-11-08 16:59:18,901][16998] Loaded experiment state at self.train_step=978, self.env_steps=4005888
1469
+ [2024-11-08 16:59:18,902][16998] Initialized policy 0 weights for model version 978
1470
+ [2024-11-08 16:59:18,905][16998] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1471
+ [2024-11-08 16:59:18,915][16998] LearnerWorker_p0 finished initialization!
1472
+ [2024-11-08 16:59:19,021][17011] RunningMeanStd input shape: (3, 72, 128)
1473
+ [2024-11-08 16:59:19,023][17011] RunningMeanStd input shape: (1,)
1474
+ [2024-11-08 16:59:19,039][17011] ConvEncoder: input_channels=3
1475
+ [2024-11-08 16:59:19,147][17011] Conv encoder output size: 512
1476
+ [2024-11-08 16:59:19,148][17011] Policy head output size: 512
1477
+ [2024-11-08 16:59:19,203][00398] Inference worker 0-0 is ready!
1478
+ [2024-11-08 16:59:19,205][00398] All inference workers are ready! Signal rollout workers to start!
1479
+ [2024-11-08 16:59:19,449][17013] Doom resolution: 160x120, resize resolution: (128, 72)
1480
+ [2024-11-08 16:59:19,462][17012] Doom resolution: 160x120, resize resolution: (128, 72)
1481
+ [2024-11-08 16:59:19,470][17015] Doom resolution: 160x120, resize resolution: (128, 72)
1482
+ [2024-11-08 16:59:19,477][17019] Doom resolution: 160x120, resize resolution: (128, 72)
1483
+ [2024-11-08 16:59:19,530][17018] Doom resolution: 160x120, resize resolution: (128, 72)
1484
+ [2024-11-08 16:59:19,527][17014] Doom resolution: 160x120, resize resolution: (128, 72)
1485
+ [2024-11-08 16:59:19,568][17016] Doom resolution: 160x120, resize resolution: (128, 72)
1486
+ [2024-11-08 16:59:19,579][17017] Doom resolution: 160x120, resize resolution: (128, 72)
1487
+ [2024-11-08 16:59:20,388][00398] Heartbeat connected on Batcher_0
1488
+ [2024-11-08 16:59:20,394][00398] Heartbeat connected on LearnerWorker_p0
1489
+ [2024-11-08 16:59:20,433][00398] Heartbeat connected on InferenceWorker_p0-w0
1490
+ [2024-11-08 16:59:20,908][17012] Decorrelating experience for 0 frames...
1491
+ [2024-11-08 16:59:20,913][17014] Decorrelating experience for 0 frames...
1492
+ [2024-11-08 16:59:20,920][17016] Decorrelating experience for 0 frames...
1493
+ [2024-11-08 16:59:21,090][17013] Decorrelating experience for 0 frames...
1494
+ [2024-11-08 16:59:21,123][17015] Decorrelating experience for 0 frames...
1495
+ [2024-11-08 16:59:21,142][17019] Decorrelating experience for 0 frames...
1496
+ [2024-11-08 16:59:21,166][17018] Decorrelating experience for 0 frames...
1497
+ [2024-11-08 16:59:21,836][17016] Decorrelating experience for 32 frames...
1498
+ [2024-11-08 16:59:21,938][17012] Decorrelating experience for 32 frames...
1499
+ [2024-11-08 16:59:22,182][17013] Decorrelating experience for 32 frames...
1500
+ [2024-11-08 16:59:22,247][17015] Decorrelating experience for 32 frames...
1501
+ [2024-11-08 16:59:22,357][17019] Decorrelating experience for 32 frames...
1502
+ [2024-11-08 16:59:22,649][00398] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1503
+ [2024-11-08 16:59:23,477][17014] Decorrelating experience for 32 frames...
1504
+ [2024-11-08 16:59:23,944][17016] Decorrelating experience for 64 frames...
1505
+ [2024-11-08 16:59:24,003][17018] Decorrelating experience for 32 frames...
1506
+ [2024-11-08 16:59:24,256][17012] Decorrelating experience for 64 frames...
1507
+ [2024-11-08 16:59:24,469][17013] Decorrelating experience for 64 frames...
1508
+ [2024-11-08 16:59:24,574][17015] Decorrelating experience for 64 frames...
1509
+ [2024-11-08 16:59:24,723][17019] Decorrelating experience for 64 frames...
1510
+ [2024-11-08 16:59:25,781][17017] Decorrelating experience for 0 frames...
1511
+ [2024-11-08 16:59:26,151][17013] Decorrelating experience for 96 frames...
1512
+ [2024-11-08 16:59:26,207][17016] Decorrelating experience for 96 frames...
1513
+ [2024-11-08 16:59:26,331][17015] Decorrelating experience for 96 frames...
1514
+ [2024-11-08 16:59:26,445][17012] Decorrelating experience for 96 frames...
1515
+ [2024-11-08 16:59:26,477][17014] Decorrelating experience for 64 frames...
1516
+ [2024-11-08 16:59:26,495][00398] Heartbeat connected on RolloutWorker_w1
1517
+ [2024-11-08 16:59:26,537][00398] Heartbeat connected on RolloutWorker_w6
1518
+ [2024-11-08 16:59:26,642][00398] Heartbeat connected on RolloutWorker_w3
1519
+ [2024-11-08 16:59:27,024][00398] Heartbeat connected on RolloutWorker_w0
1520
+ [2024-11-08 16:59:27,649][00398] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1521
+ [2024-11-08 16:59:28,643][17018] Decorrelating experience for 64 frames...
1522
+ [2024-11-08 16:59:28,695][17017] Decorrelating experience for 32 frames...
1523
+ [2024-11-08 16:59:29,058][17019] Decorrelating experience for 96 frames...
1524
+ [2024-11-08 16:59:29,643][00398] Heartbeat connected on RolloutWorker_w7
1525
+ [2024-11-08 16:59:30,090][17014] Decorrelating experience for 96 frames...
1526
+ [2024-11-08 16:59:30,426][00398] Heartbeat connected on RolloutWorker_w2
1527
+ [2024-11-08 16:59:32,623][17018] Decorrelating experience for 96 frames...
1528
+ [2024-11-08 16:59:32,649][00398] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 180.2. Samples: 1802. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1529
+ [2024-11-08 16:59:32,655][00398] Avg episode reward: [(0, '4.423')]
1530
+ [2024-11-08 16:59:33,014][00398] Heartbeat connected on RolloutWorker_w5
1531
+ [2024-11-08 16:59:33,494][16998] Signal inference workers to stop experience collection...
1532
+ [2024-11-08 16:59:33,542][17011] InferenceWorker_p0-w0: stopping experience collection
1533
+ [2024-11-08 16:59:33,759][17017] Decorrelating experience for 64 frames...
1534
+ [2024-11-08 16:59:34,208][17017] Decorrelating experience for 96 frames...
1535
+ [2024-11-08 16:59:34,286][00398] Heartbeat connected on RolloutWorker_w4
1536
+ [2024-11-08 16:59:35,315][16998] Signal inference workers to resume experience collection...
1537
+ [2024-11-08 16:59:35,318][17011] InferenceWorker_p0-w0: resuming experience collection
1538
+ [2024-11-08 16:59:37,656][00398] Fps is (10 sec: 1637.1, 60 sec: 1091.7, 300 sec: 1091.7). Total num frames: 4022272. Throughput: 0: 326.1. Samples: 4894. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
1539
+ [2024-11-08 16:59:37,659][00398] Avg episode reward: [(0, '8.044')]
1540
+ [2024-11-08 16:59:42,649][00398] Fps is (10 sec: 3276.7, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 4038656. Throughput: 0: 376.5. Samples: 7530. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1541
+ [2024-11-08 16:59:42,652][00398] Avg episode reward: [(0, '11.289')]
1542
+ [2024-11-08 16:59:44,994][17011] Updated weights for policy 0, policy_version 988 (0.0042)
1543
+ [2024-11-08 16:59:47,649][00398] Fps is (10 sec: 3279.3, 60 sec: 1966.1, 300 sec: 1966.1). Total num frames: 4055040. Throughput: 0: 471.2. Samples: 11780. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1544
+ [2024-11-08 16:59:47,654][00398] Avg episode reward: [(0, '13.152')]
1545
+ [2024-11-08 16:59:52,649][00398] Fps is (10 sec: 3686.5, 60 sec: 2321.1, 300 sec: 2321.1). Total num frames: 4075520. Throughput: 0: 612.4. Samples: 18372. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1546
+ [2024-11-08 16:59:52,651][00398] Avg episode reward: [(0, '17.981')]
1547
+ [2024-11-08 16:59:54,675][17011] Updated weights for policy 0, policy_version 998 (0.0027)
1548
+ [2024-11-08 16:59:57,650][00398] Fps is (10 sec: 4505.0, 60 sec: 2691.6, 300 sec: 2691.6). Total num frames: 4100096. Throughput: 0: 622.7. Samples: 21796. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1549
+ [2024-11-08 16:59:57,652][00398] Avg episode reward: [(0, '20.430')]
1550
+ [2024-11-08 17:00:02,650][00398] Fps is (10 sec: 3685.8, 60 sec: 2662.3, 300 sec: 2662.3). Total num frames: 4112384. Throughput: 0: 670.3. Samples: 26812. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1551
+ [2024-11-08 17:00:02,653][00398] Avg episode reward: [(0, '19.891')]
1552
+ [2024-11-08 17:00:06,403][17011] Updated weights for policy 0, policy_version 1008 (0.0022)
1553
+ [2024-11-08 17:00:07,655][00398] Fps is (10 sec: 3275.2, 60 sec: 2821.3, 300 sec: 2821.3). Total num frames: 4132864. Throughput: 0: 713.2. Samples: 32100. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1554
+ [2024-11-08 17:00:07,657][00398] Avg episode reward: [(0, '23.205')]
1555
+ [2024-11-08 17:00:12,649][00398] Fps is (10 sec: 4096.5, 60 sec: 2949.1, 300 sec: 2949.1). Total num frames: 4153344. Throughput: 0: 788.4. Samples: 35478. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1556
+ [2024-11-08 17:00:12,651][00398] Avg episode reward: [(0, '22.991')]
1557
+ [2024-11-08 17:00:15,512][17011] Updated weights for policy 0, policy_version 1018 (0.0027)
1558
+ [2024-11-08 17:00:17,650][00398] Fps is (10 sec: 4097.8, 60 sec: 3053.3, 300 sec: 3053.3). Total num frames: 4173824. Throughput: 0: 891.5. Samples: 41922. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1559
+ [2024-11-08 17:00:17,655][00398] Avg episode reward: [(0, '23.155')]
1560
+ [2024-11-08 17:00:22,649][00398] Fps is (10 sec: 3686.5, 60 sec: 3072.0, 300 sec: 3072.0). Total num frames: 4190208. Throughput: 0: 920.5. Samples: 46310. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1561
+ [2024-11-08 17:00:22,650][00398] Avg episode reward: [(0, '21.656')]
1562
+ [2024-11-08 17:00:26,796][17011] Updated weights for policy 0, policy_version 1028 (0.0016)
1563
+ [2024-11-08 17:00:27,649][00398] Fps is (10 sec: 4096.5, 60 sec: 3481.6, 300 sec: 3213.8). Total num frames: 4214784. Throughput: 0: 941.8. Samples: 49910. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1564
+ [2024-11-08 17:00:27,653][00398] Avg episode reward: [(0, '21.554')]
1565
+ [2024-11-08 17:00:32,649][00398] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3276.8). Total num frames: 4235264. Throughput: 0: 1003.4. Samples: 56934. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1566
+ [2024-11-08 17:00:32,651][00398] Avg episode reward: [(0, '21.658')]
1567
+ [2024-11-08 17:00:37,509][17011] Updated weights for policy 0, policy_version 1038 (0.0017)
1568
+ [2024-11-08 17:00:37,649][00398] Fps is (10 sec: 3686.6, 60 sec: 3823.4, 300 sec: 3276.8). Total num frames: 4251648. Throughput: 0: 961.5. Samples: 61640. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1569
+ [2024-11-08 17:00:37,654][00398] Avg episode reward: [(0, '21.340')]
1570
+ [2024-11-08 17:00:42,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3823.0, 300 sec: 3276.8). Total num frames: 4268032. Throughput: 0: 938.7. Samples: 64036. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1571
+ [2024-11-08 17:00:42,653][00398] Avg episode reward: [(0, '20.990')]
1572
+ [2024-11-08 17:00:47,082][17011] Updated weights for policy 0, policy_version 1048 (0.0019)
1573
+ [2024-11-08 17:00:47,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3373.2). Total num frames: 4292608. Throughput: 0: 984.0. Samples: 71090. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1574
+ [2024-11-08 17:00:47,650][00398] Avg episode reward: [(0, '21.701')]
1575
+ [2024-11-08 17:00:52,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3367.8). Total num frames: 4308992. Throughput: 0: 994.7. Samples: 76856. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1576
+ [2024-11-08 17:00:52,654][00398] Avg episode reward: [(0, '22.117')]
1577
+ [2024-11-08 17:00:57,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3363.0). Total num frames: 4325376. Throughput: 0: 967.9. Samples: 79034. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1578
+ [2024-11-08 17:00:57,650][00398] Avg episode reward: [(0, '22.864')]
1579
+ [2024-11-08 17:00:57,663][16998] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001056_4325376.pth...
1580
+ [2024-11-08 17:00:57,816][16998] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000960_3932160.pth
1581
+ [2024-11-08 17:00:58,738][17011] Updated weights for policy 0, policy_version 1058 (0.0041)
1582
+ [2024-11-08 17:01:02,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3959.6, 300 sec: 3440.6). Total num frames: 4349952. Throughput: 0: 968.1. Samples: 85484. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1583
+ [2024-11-08 17:01:02,651][00398] Avg episode reward: [(0, '23.136')]
1584
+ [2024-11-08 17:01:07,649][00398] Fps is (10 sec: 4505.6, 60 sec: 3959.9, 300 sec: 3471.8). Total num frames: 4370432. Throughput: 0: 1015.6. Samples: 92012. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1585
+ [2024-11-08 17:01:07,650][00398] Avg episode reward: [(0, '23.627')]
1586
+ [2024-11-08 17:01:08,118][17011] Updated weights for policy 0, policy_version 1068 (0.0021)
1587
+ [2024-11-08 17:01:12,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3425.7). Total num frames: 4382720. Throughput: 0: 978.9. Samples: 93962. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1588
+ [2024-11-08 17:01:12,650][00398] Avg episode reward: [(0, '24.101')]
1589
+ [2024-11-08 17:01:17,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3823.0, 300 sec: 3454.9). Total num frames: 4403200. Throughput: 0: 937.0. Samples: 99098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1590
+ [2024-11-08 17:01:17,651][00398] Avg episode reward: [(0, '24.049')]
1591
+ [2024-11-08 17:01:19,597][17011] Updated weights for policy 0, policy_version 1078 (0.0015)
1592
+ [2024-11-08 17:01:22,649][00398] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3515.7). Total num frames: 4427776. Throughput: 0: 984.4. Samples: 105936. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1593
+ [2024-11-08 17:01:22,651][00398] Avg episode reward: [(0, '22.574')]
1594
+ [2024-11-08 17:01:27,649][00398] Fps is (10 sec: 4095.9, 60 sec: 3823.0, 300 sec: 3506.2). Total num frames: 4444160. Throughput: 0: 994.1. Samples: 108772. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1595
+ [2024-11-08 17:01:27,651][00398] Avg episode reward: [(0, '22.065')]
1596
+ [2024-11-08 17:01:31,571][17011] Updated weights for policy 0, policy_version 1088 (0.0032)
1597
+ [2024-11-08 17:01:32,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3497.4). Total num frames: 4460544. Throughput: 0: 930.0. Samples: 112938. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1598
+ [2024-11-08 17:01:32,651][00398] Avg episode reward: [(0, '21.502')]
1599
+ [2024-11-08 17:01:37,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3549.9). Total num frames: 4485120. Throughput: 0: 962.6. Samples: 120172. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1600
+ [2024-11-08 17:01:37,654][00398] Avg episode reward: [(0, '20.608')]
1601
+ [2024-11-08 17:01:40,052][17011] Updated weights for policy 0, policy_version 1098 (0.0026)
1602
+ [2024-11-08 17:01:42,648][00398] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3569.4). Total num frames: 4505600. Throughput: 0: 991.1. Samples: 123632. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1603
+ [2024-11-08 17:01:42,654][00398] Avg episode reward: [(0, '21.205')]
1604
+ [2024-11-08 17:01:47,649][00398] Fps is (10 sec: 3276.9, 60 sec: 3754.7, 300 sec: 3531.0). Total num frames: 4517888. Throughput: 0: 949.7. Samples: 128220. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1605
+ [2024-11-08 17:01:47,653][00398] Avg episode reward: [(0, '21.930')]
1606
+ [2024-11-08 17:01:51,745][17011] Updated weights for policy 0, policy_version 1108 (0.0022)
1607
+ [2024-11-08 17:01:52,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3549.9). Total num frames: 4538368. Throughput: 0: 938.0. Samples: 134220. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1608
+ [2024-11-08 17:01:52,655][00398] Avg episode reward: [(0, '21.777')]
1609
+ [2024-11-08 17:01:57,648][00398] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3593.9). Total num frames: 4562944. Throughput: 0: 974.1. Samples: 137798. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1610
+ [2024-11-08 17:01:57,651][00398] Avg episode reward: [(0, '21.218')]
1611
+ [2024-11-08 17:02:01,932][17011] Updated weights for policy 0, policy_version 1118 (0.0018)
1612
+ [2024-11-08 17:02:02,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3584.0). Total num frames: 4579328. Throughput: 0: 989.1. Samples: 143606. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1613
+ [2024-11-08 17:02:02,654][00398] Avg episode reward: [(0, '21.211')]
1614
+ [2024-11-08 17:02:07,649][00398] Fps is (10 sec: 3686.3, 60 sec: 3822.9, 300 sec: 3599.5). Total num frames: 4599808. Throughput: 0: 951.1. Samples: 148738. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1615
+ [2024-11-08 17:02:07,652][00398] Avg episode reward: [(0, '21.582')]
1616
+ [2024-11-08 17:02:12,007][17011] Updated weights for policy 0, policy_version 1128 (0.0013)
1617
+ [2024-11-08 17:02:12,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3614.1). Total num frames: 4620288. Throughput: 0: 966.5. Samples: 152266. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1618
+ [2024-11-08 17:02:12,651][00398] Avg episode reward: [(0, '19.963')]
1619
+ [2024-11-08 17:02:17,649][00398] Fps is (10 sec: 4096.1, 60 sec: 3959.5, 300 sec: 3627.9). Total num frames: 4640768. Throughput: 0: 1024.7. Samples: 159048. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1620
+ [2024-11-08 17:02:17,653][00398] Avg episode reward: [(0, '20.799')]
1621
+ [2024-11-08 17:02:22,649][00398] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3618.1). Total num frames: 4657152. Throughput: 0: 957.1. Samples: 163242. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1622
+ [2024-11-08 17:02:22,651][00398] Avg episode reward: [(0, '20.026')]
1623
+ [2024-11-08 17:02:23,444][17011] Updated weights for policy 0, policy_version 1138 (0.0023)
1624
+ [2024-11-08 17:02:27,649][00398] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3631.0). Total num frames: 4677632. Throughput: 0: 953.8. Samples: 166552. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1625
+ [2024-11-08 17:02:27,657][00398] Avg episode reward: [(0, '20.024')]
1626
+ [2024-11-08 17:02:32,144][17011] Updated weights for policy 0, policy_version 1148 (0.0031)
1627
+ [2024-11-08 17:02:32,649][00398] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3664.8). Total num frames: 4702208. Throughput: 0: 1008.0. Samples: 173580. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1628
+ [2024-11-08 17:02:32,651][00398] Avg episode reward: [(0, '21.018')]
1629
+ [2024-11-08 17:02:37,650][00398] Fps is (10 sec: 4095.6, 60 sec: 3891.1, 300 sec: 3654.9). Total num frames: 4718592. Throughput: 0: 987.5. Samples: 178658. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1630
+ [2024-11-08 17:02:37,654][00398] Avg episode reward: [(0, '22.114')]
1631
+ [2024-11-08 17:02:42,649][00398] Fps is (10 sec: 3276.7, 60 sec: 3822.9, 300 sec: 3645.4). Total num frames: 4734976. Throughput: 0: 957.8. Samples: 180900. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1632
+ [2024-11-08 17:02:42,651][00398] Avg episode reward: [(0, '21.602')]
1633
+ [2024-11-08 17:02:43,699][17011] Updated weights for policy 0, policy_version 1158 (0.0015)
1634
+ [2024-11-08 17:02:47,649][00398] Fps is (10 sec: 4096.4, 60 sec: 4027.7, 300 sec: 3676.4). Total num frames: 4759552. Throughput: 0: 980.9. Samples: 187748. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1635
+ [2024-11-08 17:02:47,654][00398] Avg episode reward: [(0, '23.197')]
1636
+ [2024-11-08 17:02:52,651][00398] Fps is (10 sec: 4095.3, 60 sec: 3959.3, 300 sec: 3666.9). Total num frames: 4775936. Throughput: 0: 998.1. Samples: 193654. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1637
+ [2024-11-08 17:02:52,654][00398] Avg episode reward: [(0, '24.019')]
1638
+ [2024-11-08 17:02:54,558][17011] Updated weights for policy 0, policy_version 1168 (0.0019)
1639
+ [2024-11-08 17:02:57,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3657.8). Total num frames: 4792320. Throughput: 0: 963.5. Samples: 195624. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1640
+ [2024-11-08 17:02:57,651][00398] Avg episode reward: [(0, '22.606')]
1641
+ [2024-11-08 17:02:57,663][16998] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001170_4792320.pth...
1642
+ [2024-11-08 17:02:57,786][16998] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
1643
+ [2024-11-08 17:03:02,648][00398] Fps is (10 sec: 3687.2, 60 sec: 3891.2, 300 sec: 3667.8). Total num frames: 4812800. Throughput: 0: 945.6. Samples: 201598. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1644
+ [2024-11-08 17:03:02,651][00398] Avg episode reward: [(0, '22.460')]
1645
+ [2024-11-08 17:03:04,419][17011] Updated weights for policy 0, policy_version 1178 (0.0017)
1646
+ [2024-11-08 17:03:07,649][00398] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3695.5). Total num frames: 4837376. Throughput: 0: 1013.3. Samples: 208840. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1647
+ [2024-11-08 17:03:07,653][00398] Avg episode reward: [(0, '23.119')]
1648
+ [2024-11-08 17:03:12,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3686.4). Total num frames: 4853760. Throughput: 0: 988.6. Samples: 211038. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1649
+ [2024-11-08 17:03:12,651][00398] Avg episode reward: [(0, '22.357')]
1650
+ [2024-11-08 17:03:16,179][17011] Updated weights for policy 0, policy_version 1188 (0.0023)
1651
+ [2024-11-08 17:03:17,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3677.7). Total num frames: 4870144. Throughput: 0: 935.6. Samples: 215684. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1652
+ [2024-11-08 17:03:17,655][00398] Avg episode reward: [(0, '23.086')]
1653
+ [2024-11-08 17:03:22,649][00398] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3703.5). Total num frames: 4894720. Throughput: 0: 974.7. Samples: 222518. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1654
+ [2024-11-08 17:03:22,655][00398] Avg episode reward: [(0, '22.647')]
1655
+ [2024-11-08 17:03:25,035][17011] Updated weights for policy 0, policy_version 1198 (0.0014)
1656
+ [2024-11-08 17:03:27,651][00398] Fps is (10 sec: 4095.2, 60 sec: 3891.1, 300 sec: 3694.7). Total num frames: 4911104. Throughput: 0: 999.0. Samples: 225856. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1657
+ [2024-11-08 17:03:27,656][00398] Avg episode reward: [(0, '21.628')]
1658
+ [2024-11-08 17:03:32,649][00398] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3686.4). Total num frames: 4927488. Throughput: 0: 942.6. Samples: 230164. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1659
+ [2024-11-08 17:03:32,655][00398] Avg episode reward: [(0, '21.779')]
1660
+ [2024-11-08 17:03:36,494][17011] Updated weights for policy 0, policy_version 1208 (0.0018)
1661
+ [2024-11-08 17:03:37,649][00398] Fps is (10 sec: 4096.8, 60 sec: 3891.3, 300 sec: 3710.5). Total num frames: 4952064. Throughput: 0: 962.0. Samples: 236944. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1662
+ [2024-11-08 17:03:37,651][00398] Avg episode reward: [(0, '21.072')]
1663
+ [2024-11-08 17:03:42,649][00398] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3717.9). Total num frames: 4972544. Throughput: 0: 996.1. Samples: 240450. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1664
+ [2024-11-08 17:03:42,655][00398] Avg episode reward: [(0, '20.331')]
1665
+ [2024-11-08 17:03:47,302][17011] Updated weights for policy 0, policy_version 1218 (0.0018)
1666
+ [2024-11-08 17:03:47,648][00398] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3709.6). Total num frames: 4988928. Throughput: 0: 978.0. Samples: 245608. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1667
+ [2024-11-08 17:03:47,654][00398] Avg episode reward: [(0, '21.012')]
1668
+ [2024-11-08 17:03:51,616][16998] Stopping Batcher_0...
1669
+ [2024-11-08 17:03:51,617][16998] Loop batcher_evt_loop terminating...
1670
+ [2024-11-08 17:03:51,618][00398] Component Batcher_0 stopped!
1671
+ [2024-11-08 17:03:51,621][16998] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1672
+ [2024-11-08 17:03:51,668][17011] Weights refcount: 2 0
1673
+ [2024-11-08 17:03:51,672][00398] Component InferenceWorker_p0-w0 stopped!
1674
+ [2024-11-08 17:03:51,672][17011] Stopping InferenceWorker_p0-w0...
1675
+ [2024-11-08 17:03:51,677][17011] Loop inference_proc0-0_evt_loop terminating...
1676
+ [2024-11-08 17:03:51,767][16998] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001056_4325376.pth
1677
+ [2024-11-08 17:03:51,777][16998] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1678
+ [2024-11-08 17:03:51,953][00398] Component LearnerWorker_p0 stopped!
1679
+ [2024-11-08 17:03:51,956][16998] Stopping LearnerWorker_p0...
1680
+ [2024-11-08 17:03:51,956][16998] Loop learner_proc0_evt_loop terminating...
1681
+ [2024-11-08 17:03:52,070][00398] Component RolloutWorker_w1 stopped!
1682
+ [2024-11-08 17:03:52,069][17013] Stopping RolloutWorker_w1...
1683
+ [2024-11-08 17:03:52,075][17013] Loop rollout_proc1_evt_loop terminating...
1684
+ [2024-11-08 17:03:52,087][17012] Stopping RolloutWorker_w0...
1685
+ [2024-11-08 17:03:52,087][00398] Component RolloutWorker_w0 stopped!
1686
+ [2024-11-08 17:03:52,092][17012] Loop rollout_proc0_evt_loop terminating...
1687
+ [2024-11-08 17:03:52,096][17015] Stopping RolloutWorker_w3...
1688
+ [2024-11-08 17:03:52,095][00398] Component RolloutWorker_w3 stopped!
1689
+ [2024-11-08 17:03:52,102][17016] Stopping RolloutWorker_w6...
1690
+ [2024-11-08 17:03:52,102][00398] Component RolloutWorker_w6 stopped!
1691
+ [2024-11-08 17:03:52,100][17015] Loop rollout_proc3_evt_loop terminating...
1692
+ [2024-11-08 17:03:52,116][17016] Loop rollout_proc6_evt_loop terminating...
1693
+ [2024-11-08 17:03:52,119][17017] Stopping RolloutWorker_w4...
1694
+ [2024-11-08 17:03:52,119][00398] Component RolloutWorker_w4 stopped!
1695
+ [2024-11-08 17:03:52,133][17014] Stopping RolloutWorker_w2...
1696
+ [2024-11-08 17:03:52,131][17017] Loop rollout_proc4_evt_loop terminating...
1697
+ [2024-11-08 17:03:52,134][00398] Component RolloutWorker_w2 stopped!
1698
+ [2024-11-08 17:03:52,148][17014] Loop rollout_proc2_evt_loop terminating...
1699
+ [2024-11-08 17:03:52,168][17018] Stopping RolloutWorker_w5...
1700
+ [2024-11-08 17:03:52,168][00398] Component RolloutWorker_w5 stopped!
1701
+ [2024-11-08 17:03:52,170][17018] Loop rollout_proc5_evt_loop terminating...
1702
+ [2024-11-08 17:03:52,186][00398] Component RolloutWorker_w7 stopped!
1703
+ [2024-11-08 17:03:52,187][17019] Stopping RolloutWorker_w7...
1704
+ [2024-11-08 17:03:52,194][00398] Waiting for process learner_proc0 to stop...
1705
+ [2024-11-08 17:03:52,199][17019] Loop rollout_proc7_evt_loop terminating...
1706
+ [2024-11-08 17:03:53,675][00398] Waiting for process inference_proc0-0 to join...
1707
+ [2024-11-08 17:03:53,683][00398] Waiting for process rollout_proc0 to join...
1708
+ [2024-11-08 17:03:55,692][00398] Waiting for process rollout_proc1 to join...
1709
+ [2024-11-08 17:03:55,696][00398] Waiting for process rollout_proc2 to join...
1710
+ [2024-11-08 17:03:55,699][00398] Waiting for process rollout_proc3 to join...
1711
+ [2024-11-08 17:03:55,702][00398] Waiting for process rollout_proc4 to join...
1712
+ [2024-11-08 17:03:55,704][00398] Waiting for process rollout_proc5 to join...
1713
+ [2024-11-08 17:03:55,705][00398] Waiting for process rollout_proc6 to join...
1714
+ [2024-11-08 17:03:55,707][00398] Waiting for process rollout_proc7 to join...
1715
+ [2024-11-08 17:03:55,709][00398] Batcher 0 profile tree view:
1716
+ batching: 7.2792, releasing_batches: 0.0312
1717
+ [2024-11-08 17:03:55,711][00398] InferenceWorker_p0-w0 profile tree view:
1718
+ wait_policy: 0.0024
1719
+ wait_policy_total: 109.3784
1720
+ update_model: 2.1380
1721
+ weight_update: 0.0019
1722
+ one_step: 0.0024
1723
+ handle_policy_step: 148.1923
1724
+ deserialize: 3.6286, stack: 0.8147, obs_to_device_normalize: 31.7240, forward: 74.9819, send_messages: 7.2755
1725
+ prepare_outputs: 22.4408
1726
+ to_cpu: 13.8446
1727
+ [2024-11-08 17:03:55,713][00398] Learner 0 profile tree view:
1728
+ misc: 0.0015, prepare_batch: 4.6403
1729
+ train: 21.1580
1730
+ epoch_init: 0.0014, minibatch_init: 0.0032, losses_postprocess: 0.1867, kl_divergence: 0.1733, after_optimizer: 0.9612
1731
+ calculate_losses: 7.7968
1732
+ losses_init: 0.0152, forward_head: 0.6687, bptt_initial: 5.1506, tail: 0.3464, advantages_returns: 0.0790, losses: 0.9821
1733
+ bptt: 0.4830
1734
+ bptt_forward_core: 0.4663
1735
+ update: 11.8912
1736
+ clip: 0.2475
1737
+ [2024-11-08 17:03:55,714][00398] RolloutWorker_w0 profile tree view:
1738
+ wait_for_trajectories: 0.0673, enqueue_policy_requests: 25.7625, env_step: 206.2125, overhead: 3.2194, complete_rollouts: 1.7571
1739
+ save_policy_outputs: 5.2639
1740
+ split_output_tensors: 2.0946
1741
+ [2024-11-08 17:03:55,715][00398] RolloutWorker_w7 profile tree view:
1742
+ wait_for_trajectories: 0.0747, enqueue_policy_requests: 24.8768, env_step: 203.8205, overhead: 3.3080, complete_rollouts: 1.7814
1743
+ save_policy_outputs: 5.4304
1744
+ split_output_tensors: 2.0578
1745
+ [2024-11-08 17:03:55,717][00398] Loop Runner_EvtLoop terminating...
1746
+ [2024-11-08 17:03:55,718][00398] Runner profile tree view:
1747
+ main_loop: 295.2884
1748
+ [2024-11-08 17:03:55,719][00398] Collected {0: 5005312}, FPS: 3384.6
1749
+ [2024-11-08 17:03:55,753][00398] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1750
+ [2024-11-08 17:03:55,755][00398] Overriding arg 'num_workers' with value 1 passed from command line
1751
+ [2024-11-08 17:03:55,756][00398] Adding new argument 'no_render'=True that is not in the saved config file!
1752
+ [2024-11-08 17:03:55,758][00398] Adding new argument 'save_video'=True that is not in the saved config file!
1753
+ [2024-11-08 17:03:55,759][00398] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1754
+ [2024-11-08 17:03:55,760][00398] Adding new argument 'video_name'=None that is not in the saved config file!
1755
+ [2024-11-08 17:03:55,762][00398] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
1756
+ [2024-11-08 17:03:55,764][00398] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1757
+ [2024-11-08 17:03:55,765][00398] Adding new argument 'push_to_hub'=False that is not in the saved config file!
1758
+ [2024-11-08 17:03:55,767][00398] Adding new argument 'hf_repository'=None that is not in the saved config file!
1759
+ [2024-11-08 17:03:55,769][00398] Adding new argument 'policy_index'=0 that is not in the saved config file!
1760
+ [2024-11-08 17:03:55,770][00398] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1761
+ [2024-11-08 17:03:55,772][00398] Adding new argument 'train_script'=None that is not in the saved config file!
1762
+ [2024-11-08 17:03:55,774][00398] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1763
+ [2024-11-08 17:03:55,775][00398] Using frameskip 1 and render_action_repeat=4 for evaluation
1764
+ [2024-11-08 17:03:55,816][00398] RunningMeanStd input shape: (3, 72, 128)
1765
+ [2024-11-08 17:03:55,820][00398] RunningMeanStd input shape: (1,)
1766
+ [2024-11-08 17:03:55,833][00398] ConvEncoder: input_channels=3
1767
+ [2024-11-08 17:03:55,870][00398] Conv encoder output size: 512
1768
+ [2024-11-08 17:03:55,871][00398] Policy head output size: 512
1769
+ [2024-11-08 17:03:55,890][00398] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1770
+ [2024-11-08 17:03:56,334][00398] Num frames 100...
1771
+ [2024-11-08 17:03:56,468][00398] Num frames 200...
1772
+ [2024-11-08 17:03:56,603][00398] Num frames 300...
1773
+ [2024-11-08 17:03:56,751][00398] Num frames 400...
1774
+ [2024-11-08 17:03:56,872][00398] Num frames 500...
1775
+ [2024-11-08 17:03:56,993][00398] Num frames 600...
1776
+ [2024-11-08 17:03:57,116][00398] Num frames 700...
1777
+ [2024-11-08 17:03:57,240][00398] Num frames 800...
1778
+ [2024-11-08 17:03:57,359][00398] Num frames 900...
1779
+ [2024-11-08 17:03:57,495][00398] Num frames 1000...
1780
+ [2024-11-08 17:03:57,629][00398] Num frames 1100...
1781
+ [2024-11-08 17:03:57,759][00398] Num frames 1200...
1782
+ [2024-11-08 17:03:57,880][00398] Num frames 1300...
1783
+ [2024-11-08 17:03:58,000][00398] Num frames 1400...
1784
+ [2024-11-08 17:03:58,124][00398] Num frames 1500...
1785
+ [2024-11-08 17:03:58,257][00398] Num frames 1600...
1786
+ [2024-11-08 17:03:58,361][00398] Avg episode rewards: #0: 40.399, true rewards: #0: 16.400
1787
+ [2024-11-08 17:03:58,364][00398] Avg episode reward: 40.399, avg true_objective: 16.400
1788
+ [2024-11-08 17:03:58,441][00398] Num frames 1700...
1789
+ [2024-11-08 17:03:58,569][00398] Num frames 1800...
1790
+ [2024-11-08 17:03:58,693][00398] Num frames 1900...
1791
+ [2024-11-08 17:03:58,817][00398] Num frames 2000...
1792
+ [2024-11-08 17:03:58,939][00398] Num frames 2100...
1793
+ [2024-11-08 17:03:59,060][00398] Num frames 2200...
1794
+ [2024-11-08 17:03:59,196][00398] Num frames 2300...
1795
+ [2024-11-08 17:03:59,319][00398] Num frames 2400...
1796
+ [2024-11-08 17:03:59,444][00398] Num frames 2500...
1797
+ [2024-11-08 17:03:59,597][00398] Num frames 2600...
1798
+ [2024-11-08 17:03:59,773][00398] Num frames 2700...
1799
+ [2024-11-08 17:03:59,937][00398] Num frames 2800...
1800
+ [2024-11-08 17:04:00,110][00398] Num frames 2900...
1801
+ [2024-11-08 17:04:00,233][00398] Avg episode rewards: #0: 36.700, true rewards: #0: 14.700
1802
+ [2024-11-08 17:04:00,235][00398] Avg episode reward: 36.700, avg true_objective: 14.700
1803
+ [2024-11-08 17:04:00,345][00398] Num frames 3000...
1804
+ [2024-11-08 17:04:00,519][00398] Num frames 3100...
1805
+ [2024-11-08 17:04:00,684][00398] Num frames 3200...
1806
+ [2024-11-08 17:04:00,854][00398] Num frames 3300...
1807
+ [2024-11-08 17:04:01,029][00398] Num frames 3400...
1808
+ [2024-11-08 17:04:01,203][00398] Num frames 3500...
1809
+ [2024-11-08 17:04:01,388][00398] Num frames 3600...
1810
+ [2024-11-08 17:04:01,579][00398] Num frames 3700...
1811
+ [2024-11-08 17:04:01,758][00398] Num frames 3800...
1812
+ [2024-11-08 17:04:01,948][00398] Num frames 3900...
1813
+ [2024-11-08 17:04:02,130][00398] Num frames 4000...
1814
+ [2024-11-08 17:04:02,277][00398] Num frames 4100...
1815
+ [2024-11-08 17:04:02,399][00398] Num frames 4200...
1816
+ [2024-11-08 17:04:02,554][00398] Avg episode rewards: #0: 34.947, true rewards: #0: 14.280
1817
+ [2024-11-08 17:04:02,556][00398] Avg episode reward: 34.947, avg true_objective: 14.280
1818
+ [2024-11-08 17:04:02,590][00398] Num frames 4300...
1819
+ [2024-11-08 17:04:02,722][00398] Num frames 4400...
1820
+ [2024-11-08 17:04:02,842][00398] Num frames 4500...
1821
+ [2024-11-08 17:04:02,963][00398] Num frames 4600...
1822
+ [2024-11-08 17:04:03,090][00398] Num frames 4700...
1823
+ [2024-11-08 17:04:03,208][00398] Num frames 4800...
1824
+ [2024-11-08 17:04:03,335][00398] Num frames 4900...
1825
+ [2024-11-08 17:04:03,456][00398] Num frames 5000...
1826
+ [2024-11-08 17:04:03,585][00398] Num frames 5100...
1827
+ [2024-11-08 17:04:03,716][00398] Num frames 5200...
1828
+ [2024-11-08 17:04:03,841][00398] Num frames 5300...
1829
+ [2024-11-08 17:04:03,962][00398] Num frames 5400...
1830
+ [2024-11-08 17:04:04,086][00398] Num frames 5500...
1831
+ [2024-11-08 17:04:04,207][00398] Num frames 5600...
1832
+ [2024-11-08 17:04:04,333][00398] Num frames 5700...
1833
+ [2024-11-08 17:04:04,493][00398] Avg episode rewards: #0: 36.220, true rewards: #0: 14.470
1834
+ [2024-11-08 17:04:04,495][00398] Avg episode reward: 36.220, avg true_objective: 14.470
1835
+ [2024-11-08 17:04:04,514][00398] Num frames 5800...
1836
+ [2024-11-08 17:04:04,653][00398] Num frames 5900...
1837
+ [2024-11-08 17:04:04,772][00398] Num frames 6000...
1838
+ [2024-11-08 17:04:04,898][00398] Num frames 6100...
1839
+ [2024-11-08 17:04:05,016][00398] Num frames 6200...
1840
+ [2024-11-08 17:04:05,139][00398] Num frames 6300...
1841
+ [2024-11-08 17:04:05,261][00398] Num frames 6400...
1842
+ [2024-11-08 17:04:05,384][00398] Num frames 6500...
1843
+ [2024-11-08 17:04:05,505][00398] Num frames 6600...
1844
+ [2024-11-08 17:04:05,573][00398] Avg episode rewards: #0: 32.420, true rewards: #0: 13.220
1845
+ [2024-11-08 17:04:05,576][00398] Avg episode reward: 32.420, avg true_objective: 13.220
1846
+ [2024-11-08 17:04:05,696][00398] Num frames 6700...
1847
+ [2024-11-08 17:04:05,817][00398] Num frames 6800...
1848
+ [2024-11-08 17:04:05,939][00398] Num frames 6900...
1849
+ [2024-11-08 17:04:06,060][00398] Num frames 7000...
1850
+ [2024-11-08 17:04:06,186][00398] Num frames 7100...
1851
+ [2024-11-08 17:04:06,306][00398] Num frames 7200...
1852
+ [2024-11-08 17:04:06,432][00398] Num frames 7300...
1853
+ [2024-11-08 17:04:06,555][00398] Num frames 7400...
1854
+ [2024-11-08 17:04:06,706][00398] Avg episode rewards: #0: 29.623, true rewards: #0: 12.457
1855
+ [2024-11-08 17:04:06,708][00398] Avg episode reward: 29.623, avg true_objective: 12.457
1856
+ [2024-11-08 17:04:06,742][00398] Num frames 7500...
1857
+ [2024-11-08 17:04:06,863][00398] Num frames 7600...
1858
+ [2024-11-08 17:04:06,987][00398] Num frames 7700...
1859
+ [2024-11-08 17:04:07,107][00398] Num frames 7800...
1860
+ [2024-11-08 17:04:07,229][00398] Num frames 7900...
1861
+ [2024-11-08 17:04:07,351][00398] Num frames 8000...
1862
+ [2024-11-08 17:04:07,477][00398] Num frames 8100...
1863
+ [2024-11-08 17:04:07,610][00398] Num frames 8200...
1864
+ [2024-11-08 17:04:07,738][00398] Num frames 8300...
1865
+ [2024-11-08 17:04:07,813][00398] Avg episode rewards: #0: 27.877, true rewards: #0: 11.877
1866
+ [2024-11-08 17:04:07,815][00398] Avg episode reward: 27.877, avg true_objective: 11.877
1867
+ [2024-11-08 17:04:07,919][00398] Num frames 8400...
1868
+ [2024-11-08 17:04:08,037][00398] Num frames 8500...
1869
+ [2024-11-08 17:04:08,160][00398] Num frames 8600...
1870
+ [2024-11-08 17:04:08,282][00398] Num frames 8700...
1871
+ [2024-11-08 17:04:08,405][00398] Num frames 8800...
1872
+ [2024-11-08 17:04:08,526][00398] Num frames 8900...
1873
+ [2024-11-08 17:04:08,663][00398] Num frames 9000...
1874
+ [2024-11-08 17:04:08,828][00398] Avg episode rewards: #0: 25.977, true rewards: #0: 11.352
1875
+ [2024-11-08 17:04:08,830][00398] Avg episode reward: 25.977, avg true_objective: 11.352
1876
+ [2024-11-08 17:04:08,857][00398] Num frames 9100...
1877
+ [2024-11-08 17:04:08,981][00398] Num frames 9200...
1878
+ [2024-11-08 17:04:09,107][00398] Num frames 9300...
1879
+ [2024-11-08 17:04:09,230][00398] Num frames 9400...
1880
+ [2024-11-08 17:04:09,365][00398] Num frames 9500...
1881
+ [2024-11-08 17:04:09,489][00398] Num frames 9600...
1882
+ [2024-11-08 17:04:09,617][00398] Num frames 9700...
1883
+ [2024-11-08 17:04:09,740][00398] Num frames 9800...
1884
+ [2024-11-08 17:04:09,866][00398] Num frames 9900...
1885
+ [2024-11-08 17:04:09,991][00398] Num frames 10000...
1886
+ [2024-11-08 17:04:10,111][00398] Num frames 10100...
1887
+ [2024-11-08 17:04:10,215][00398] Avg episode rewards: #0: 25.709, true rewards: #0: 11.264
1888
+ [2024-11-08 17:04:10,216][00398] Avg episode reward: 25.709, avg true_objective: 11.264
1889
+ [2024-11-08 17:04:10,294][00398] Num frames 10200...
1890
+ [2024-11-08 17:04:10,415][00398] Num frames 10300...
1891
+ [2024-11-08 17:04:10,537][00398] Num frames 10400...
1892
+ [2024-11-08 17:04:10,664][00398] Num frames 10500...
1893
+ [2024-11-08 17:04:10,789][00398] Num frames 10600...
1894
+ [2024-11-08 17:04:10,914][00398] Num frames 10700...
1895
+ [2024-11-08 17:04:11,031][00398] Num frames 10800...
1896
+ [2024-11-08 17:04:11,151][00398] Num frames 10900...
1897
+ [2024-11-08 17:04:11,273][00398] Num frames 11000...
1898
+ [2024-11-08 17:04:11,394][00398] Num frames 11100...
1899
+ [2024-11-08 17:04:11,518][00398] Num frames 11200...
1900
+ [2024-11-08 17:04:11,647][00398] Num frames 11300...
1901
+ [2024-11-08 17:04:11,811][00398] Avg episode rewards: #0: 25.886, true rewards: #0: 11.386
1902
+ [2024-11-08 17:04:11,813][00398] Avg episode reward: 25.886, avg true_objective: 11.386
1903
+ [2024-11-08 17:05:19,322][00398] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1904
+ [2024-11-08 17:05:20,038][00398] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1905
+ [2024-11-08 17:05:20,043][00398] Overriding arg 'num_workers' with value 1 passed from command line
1906
+ [2024-11-08 17:05:20,045][00398] Adding new argument 'no_render'=True that is not in the saved config file!
1907
+ [2024-11-08 17:05:20,047][00398] Adding new argument 'save_video'=True that is not in the saved config file!
1908
+ [2024-11-08 17:05:20,049][00398] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1909
+ [2024-11-08 17:05:20,054][00398] Adding new argument 'video_name'=None that is not in the saved config file!
1910
+ [2024-11-08 17:05:20,055][00398] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1911
+ [2024-11-08 17:05:20,058][00398] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1912
+ [2024-11-08 17:05:20,059][00398] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1913
+ [2024-11-08 17:05:20,062][00398] Adding new argument 'hf_repository'='Brumocas/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1914
+ [2024-11-08 17:05:20,063][00398] Adding new argument 'policy_index'=0 that is not in the saved config file!
1915
+ [2024-11-08 17:05:20,064][00398] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1916
+ [2024-11-08 17:05:20,065][00398] Adding new argument 'train_script'=None that is not in the saved config file!
1917
+ [2024-11-08 17:05:20,066][00398] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1918
+ [2024-11-08 17:05:20,067][00398] Using frameskip 1 and render_action_repeat=4 for evaluation
1919
+ [2024-11-08 17:05:20,124][00398] RunningMeanStd input shape: (3, 72, 128)
1920
+ [2024-11-08 17:05:20,126][00398] RunningMeanStd input shape: (1,)
1921
+ [2024-11-08 17:05:20,144][00398] ConvEncoder: input_channels=3
1922
+ [2024-11-08 17:05:20,204][00398] Conv encoder output size: 512
1923
+ [2024-11-08 17:05:20,206][00398] Policy head output size: 512
1924
+ [2024-11-08 17:05:20,241][00398] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1925
+ [2024-11-08 17:05:21,071][00398] Num frames 100...
1926
+ [2024-11-08 17:05:21,241][00398] Num frames 200...
1927
+ [2024-11-08 17:05:21,410][00398] Num frames 300...
1928
+ [2024-11-08 17:05:21,611][00398] Num frames 400...
1929
+ [2024-11-08 17:05:21,837][00398] Num frames 500...
1930
+ [2024-11-08 17:05:22,038][00398] Num frames 600...
1931
+ [2024-11-08 17:05:22,213][00398] Num frames 700...
1932
+ [2024-11-08 17:05:22,372][00398] Num frames 800...
1933
+ [2024-11-08 17:05:22,542][00398] Num frames 900...
1934
+ [2024-11-08 17:05:22,689][00398] Avg episode rewards: #0: 20.530, true rewards: #0: 9.530
1935
+ [2024-11-08 17:05:22,691][00398] Avg episode reward: 20.530, avg true_objective: 9.530
1936
+ [2024-11-08 17:05:22,767][00398] Num frames 1000...
1937
+ [2024-11-08 17:05:22,922][00398] Num frames 1100...
1938
+ [2024-11-08 17:05:23,080][00398] Num frames 1200...
1939
+ [2024-11-08 17:05:23,237][00398] Num frames 1300...
1940
+ [2024-11-08 17:05:23,398][00398] Num frames 1400...
1941
+ [2024-11-08 17:05:23,568][00398] Num frames 1500...
1942
+ [2024-11-08 17:05:23,735][00398] Num frames 1600...
1943
+ [2024-11-08 17:05:23,899][00398] Num frames 1700...
1944
+ [2024-11-08 17:05:24,095][00398] Num frames 1800...
1945
+ [2024-11-08 17:05:24,258][00398] Num frames 1900...
1946
+ [2024-11-08 17:05:24,441][00398] Num frames 2000...
1947
+ [2024-11-08 17:05:24,639][00398] Num frames 2100...
1948
+ [2024-11-08 17:05:24,810][00398] Num frames 2200...
1949
+ [2024-11-08 17:05:24,984][00398] Num frames 2300...
1950
+ [2024-11-08 17:05:25,174][00398] Num frames 2400...
1951
+ [2024-11-08 17:05:25,377][00398] Num frames 2500...
1952
+ [2024-11-08 17:05:25,555][00398] Num frames 2600...
1953
+ [2024-11-08 17:05:25,766][00398] Num frames 2700...
1954
+ [2024-11-08 17:05:25,953][00398] Num frames 2800...
1955
+ [2024-11-08 17:05:26,087][00398] Avg episode rewards: #0: 35.205, true rewards: #0: 14.205
1956
+ [2024-11-08 17:05:26,089][00398] Avg episode reward: 35.205, avg true_objective: 14.205
1957
+ [2024-11-08 17:05:26,197][00398] Num frames 2900...
1958
+ [2024-11-08 17:05:26,383][00398] Num frames 3000...
1959
+ [2024-11-08 17:05:26,583][00398] Num frames 3100...
1960
+ [2024-11-08 17:05:26,780][00398] Num frames 3200...
1961
+ [2024-11-08 17:05:26,972][00398] Num frames 3300...
1962
+ [2024-11-08 17:05:27,150][00398] Num frames 3400...
1963
+ [2024-11-08 17:05:27,318][00398] Num frames 3500...
1964
+ [2024-11-08 17:05:27,478][00398] Num frames 3600...
1965
+ [2024-11-08 17:05:27,609][00398] Avg episode rewards: #0: 28.137, true rewards: #0: 12.137
1966
+ [2024-11-08 17:05:27,610][00398] Avg episode reward: 28.137, avg true_objective: 12.137
1967
+ [2024-11-08 17:05:27,707][00398] Num frames 3700...
1968
+ [2024-11-08 17:05:27,875][00398] Num frames 3800...
1969
+ [2024-11-08 17:05:27,995][00398] Num frames 3900...
1970
+ [2024-11-08 17:05:28,115][00398] Num frames 4000...
1971
+ [2024-11-08 17:05:28,236][00398] Num frames 4100...
1972
+ [2024-11-08 17:05:28,358][00398] Num frames 4200...
1973
+ [2024-11-08 17:05:28,478][00398] Num frames 4300...
1974
+ [2024-11-08 17:05:28,607][00398] Num frames 4400...
1975
+ [2024-11-08 17:05:28,729][00398] Num frames 4500...
1976
+ [2024-11-08 17:05:28,858][00398] Num frames 4600...
1977
+ [2024-11-08 17:05:28,979][00398] Num frames 4700...
1978
+ [2024-11-08 17:05:29,098][00398] Num frames 4800...
1979
+ [2024-11-08 17:05:29,223][00398] Num frames 4900...
1980
+ [2024-11-08 17:05:29,346][00398] Num frames 5000...
1981
+ [2024-11-08 17:05:29,466][00398] Num frames 5100...
1982
+ [2024-11-08 17:05:29,604][00398] Avg episode rewards: #0: 29.907, true rewards: #0: 12.907
1983
+ [2024-11-08 17:05:29,607][00398] Avg episode reward: 29.907, avg true_objective: 12.907
1984
+ [2024-11-08 17:05:29,654][00398] Num frames 5200...
1985
+ [2024-11-08 17:05:29,772][00398] Num frames 5300...
1986
+ [2024-11-08 17:05:29,899][00398] Num frames 5400...
1987
+ [2024-11-08 17:05:30,022][00398] Num frames 5500...
1988
+ [2024-11-08 17:05:30,142][00398] Num frames 5600...
1989
+ [2024-11-08 17:05:30,265][00398] Num frames 5700...
1990
+ [2024-11-08 17:05:30,386][00398] Num frames 5800...
1991
+ [2024-11-08 17:05:30,506][00398] Num frames 5900...
1992
+ [2024-11-08 17:05:30,638][00398] Num frames 6000...
1993
+ [2024-11-08 17:05:30,761][00398] Num frames 6100...
1994
+ [2024-11-08 17:05:30,887][00398] Num frames 6200...
1995
+ [2024-11-08 17:05:31,013][00398] Num frames 6300...
1996
+ [2024-11-08 17:05:31,133][00398] Num frames 6400...
1997
+ [2024-11-08 17:05:31,254][00398] Num frames 6500...
1998
+ [2024-11-08 17:05:31,375][00398] Num frames 6600...
1999
+ [2024-11-08 17:05:31,546][00398] Avg episode rewards: #0: 30.586, true rewards: #0: 13.386
2000
+ [2024-11-08 17:05:31,548][00398] Avg episode reward: 30.586, avg true_objective: 13.386
2001
+ [2024-11-08 17:05:31,561][00398] Num frames 6700...
2002
+ [2024-11-08 17:05:31,684][00398] Num frames 6800...
2003
+ [2024-11-08 17:05:31,803][00398] Num frames 6900...
2004
+ [2024-11-08 17:05:31,930][00398] Num frames 7000...
2005
+ [2024-11-08 17:05:32,048][00398] Num frames 7100...
2006
+ [2024-11-08 17:05:32,204][00398] Num frames 7200...
2007
+ [2024-11-08 17:05:32,272][00398] Avg episode rewards: #0: 27.008, true rewards: #0: 12.008
2008
+ [2024-11-08 17:05:32,274][00398] Avg episode reward: 27.008, avg true_objective: 12.008
2009
+ [2024-11-08 17:05:32,434][00398] Num frames 7300...
2010
+ [2024-11-08 17:05:32,617][00398] Num frames 7400...
2011
+ [2024-11-08 17:05:32,777][00398] Num frames 7500...
2012
+ [2024-11-08 17:05:32,943][00398] Num frames 7600...
2013
+ [2024-11-08 17:05:33,112][00398] Num frames 7700...
2014
+ [2024-11-08 17:05:33,279][00398] Num frames 7800...
2015
+ [2024-11-08 17:05:33,448][00398] Num frames 7900...
2016
+ [2024-11-08 17:05:33,636][00398] Num frames 8000...
2017
+ [2024-11-08 17:05:33,759][00398] Avg episode rewards: #0: 25.341, true rewards: #0: 11.484
2018
+ [2024-11-08 17:05:33,761][00398] Avg episode reward: 25.341, avg true_objective: 11.484
2019
+ [2024-11-08 17:05:33,871][00398] Num frames 8100...
2020
+ [2024-11-08 17:05:34,053][00398] Num frames 8200...
2021
+ [2024-11-08 17:05:34,232][00398] Num frames 8300...
2022
+ [2024-11-08 17:05:34,418][00398] Num frames 8400...
2023
+ [2024-11-08 17:05:34,656][00398] Avg episode rewards: #0: 23.109, true rewards: #0: 10.609
2024
+ [2024-11-08 17:05:34,659][00398] Avg episode reward: 23.109, avg true_objective: 10.609
2025
+ [2024-11-08 17:05:34,690][00398] Num frames 8500...
2026
+ [2024-11-08 17:05:34,815][00398] Num frames 8600...
2027
+ [2024-11-08 17:05:34,934][00398] Num frames 8700...
2028
+ [2024-11-08 17:05:35,066][00398] Num frames 8800...
2029
+ [2024-11-08 17:05:35,191][00398] Num frames 8900...
2030
+ [2024-11-08 17:05:35,315][00398] Num frames 9000...
2031
+ [2024-11-08 17:05:35,438][00398] Num frames 9100...
2032
+ [2024-11-08 17:05:35,565][00398] Num frames 9200...
2033
+ [2024-11-08 17:05:35,691][00398] Num frames 9300...
2034
+ [2024-11-08 17:05:35,813][00398] Num frames 9400...
2035
+ [2024-11-08 17:05:35,942][00398] Num frames 9500...
2036
+ [2024-11-08 17:05:36,128][00398] Avg episode rewards: #0: 23.664, true rewards: #0: 10.664
2037
+ [2024-11-08 17:05:36,130][00398] Avg episode reward: 23.664, avg true_objective: 10.664
2038
+ [2024-11-08 17:05:36,135][00398] Num frames 9600...
2039
+ [2024-11-08 17:05:36,256][00398] Num frames 9700...
2040
+ [2024-11-08 17:05:36,376][00398] Num frames 9800...
2041
+ [2024-11-08 17:05:36,492][00398] Num frames 9900...
2042
+ [2024-11-08 17:05:36,635][00398] Num frames 10000...
2043
+ [2024-11-08 17:05:36,783][00398] Avg episode rewards: #0: 21.978, true rewards: #0: 10.078
2044
+ [2024-11-08 17:05:36,786][00398] Avg episode reward: 21.978, avg true_objective: 10.078
2045
+ [2024-11-08 17:06:35,863][00398] Replay video saved to /content/train_dir/default_experiment/replay.mp4!