import comfy.samplers | |
import comfy.sample | |
from comfy.k_diffusion import sampling as k_diffusion_sampling | |
import latent_preview | |
import torch | |
import comfy.utils | |
class HyperSDXL1StepUnetScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"steps": ("INT", {"default": 1, "min": 1, "max": 10}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, model, steps): | |
timesteps = torch.tensor([800]) | |
sigmas = model.model.model_sampling.sigma(timesteps) | |
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) | |
return (sigmas, ) | |
NODE_CLASS_MAPPINGS = { | |
"HyperSDXL1StepUnetScheduler": HyperSDXL1StepUnetScheduler, | |
} | |