File size: 11,128 Bytes
dd0b4f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
# and associated documentation files (the “Software”), to deal in the Software without
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
import logging
import numpy as np
from mteb import RerankingEvaluator, AbsTaskReranking
from tqdm import tqdm
logger = logging.getLogger(__name__)
class ChineseRerankingEvaluator(RerankingEvaluator):
"""
This class evaluates a SentenceTransformer model for the task of re-ranking.
Given a query and a list of documents, it computes the score [query, doc_i] for all possible
documents and sorts them in decreasing order. Then, MRR@10 and MAP is compute to measure the quality of the ranking.
:param samples: Must be a list and each element is of the form:
- {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive
(relevant) documents, negative is a list of negative (irrelevant) documents.
- {'query': [], 'positive': [], 'negative': []}. Where query is a list of strings, which embeddings we average
to get the query embedding.
"""
def __call__(self, model):
scores = self.compute_metrics(model)
return scores
def compute_metrics(self, model):
return (
self.compute_metrics_batched(model)
if self.use_batched_encoding
else self.compute_metrics_individual(model)
)
def compute_metrics_batched(self, model):
"""
Computes the metrices in a batched way, by batching all queries and
all documents together
"""
if hasattr(model, 'compute_score'):
return self.compute_metrics_batched_from_crossencoder(model)
else:
return self.compute_metrics_batched_from_biencoder(model)
def compute_metrics_batched_from_crossencoder(self, model):
batch_size = 4
all_ap_scores = []
all_mrr_1_scores = []
all_mrr_5_scores = []
all_mrr_10_scores = []
all_scores = []
tmp_pairs = []
for sample in tqdm(self.samples, desc="Evaluating"):
b_pairs = [sample['query']]
for p in sample['positive']:
b_pairs.append(p)
for n in sample['negative']:
b_pairs.append(n)
tmp_pairs.append(b_pairs)
if len(tmp_pairs) == batch_size:
sample_scores = model.compute_score(tmp_pairs)
sample_scores = sum(sample_scores, [])
all_scores += sample_scores
tmp_pairs = []
if len(tmp_pairs) > 0:
sample_scores = model.compute_score(tmp_pairs)
sample_scores = sum(sample_scores, [])
all_scores += sample_scores
all_scores = np.array(all_scores)
start_inx = 0
for sample in tqdm(self.samples, desc="Evaluating"):
is_relevant = [True] * len(sample['positive']) + [False] * len(sample['negative'])
pred_scores = all_scores[start_inx:start_inx + len(is_relevant)]
start_inx += len(is_relevant)
pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order
ap = self.ap_score(is_relevant, pred_scores)
mrr_1 = self.mrr_at_k_score(is_relevant, pred_scores_argsort, 1)
mrr_5 = self.mrr_at_k_score(is_relevant, pred_scores_argsort, 5)
mrr_10 = self.mrr_at_k_score(is_relevant, pred_scores_argsort, 10)
all_mrr_1_scores.append(mrr_1)
all_mrr_5_scores.append(mrr_5)
all_mrr_10_scores.append(mrr_10)
all_ap_scores.append(ap)
mean_ap = np.mean(all_ap_scores)
mean_mrr_1 = np.mean(all_mrr_1_scores)
mean_mrr_5 = np.mean(all_mrr_5_scores)
mean_mrr_10 = np.mean(all_mrr_10_scores)
return {"map": mean_ap, "mrr_1": mean_mrr_1, 'mrr_5': mean_mrr_5, 'mrr_10': mean_mrr_10}
def compute_metrics_batched_from_biencoder(self, model):
all_mrr_scores = []
all_ap_scores = []
logger.info("Encoding queries...")
if isinstance(self.samples[0]["query"], str):
if hasattr(model, 'encode_queries'):
all_query_embs = model.encode_queries(
[sample["query"] for sample in self.samples],
convert_to_tensor=True,
batch_size=self.batch_size,
)
else:
all_query_embs = model.encode(
[sample["query"] for sample in self.samples],
convert_to_tensor=True,
batch_size=self.batch_size,
)
elif isinstance(self.samples[0]["query"], list):
# In case the query is a list of strings, we get the most similar embedding to any of the queries
all_query_flattened = [q for sample in self.samples for q in sample["query"]]
if hasattr(model, 'encode_queries'):
all_query_embs = model.encode_queries(all_query_flattened, convert_to_tensor=True,
batch_size=self.batch_size)
else:
all_query_embs = model.encode(all_query_flattened, convert_to_tensor=True, batch_size=self.batch_size)
else:
raise ValueError(f"Query must be a string or a list of strings but is {type(self.samples[0]['query'])}")
logger.info("Encoding candidates...")
all_docs = []
for sample in self.samples:
all_docs.extend(sample["positive"])
all_docs.extend(sample["negative"])
all_docs_embs = model.encode(all_docs, convert_to_tensor=True, batch_size=self.batch_size)
# Compute scores
logger.info("Evaluating...")
query_idx, docs_idx = 0, 0
for instance in self.samples:
num_subqueries = len(instance["query"]) if isinstance(instance["query"], list) else 1
query_emb = all_query_embs[query_idx: query_idx + num_subqueries]
query_idx += num_subqueries
num_pos = len(instance["positive"])
num_neg = len(instance["negative"])
docs_emb = all_docs_embs[docs_idx: docs_idx + num_pos + num_neg]
docs_idx += num_pos + num_neg
if num_pos == 0 or num_neg == 0:
continue
is_relevant = [True] * num_pos + [False] * num_neg
scores = self._compute_metrics_instance(query_emb, docs_emb, is_relevant)
all_mrr_scores.append(scores["mrr"])
all_ap_scores.append(scores["ap"])
mean_ap = np.mean(all_ap_scores)
mean_mrr = np.mean(all_mrr_scores)
return {"map": mean_ap, "mrr": mean_mrr}
def evaluate(self, model, split="test", **kwargs):
if not self.data_loaded:
self.load_data()
data_split = self.dataset[split]
evaluator = ChineseRerankingEvaluator(data_split, **kwargs)
scores = evaluator(model)
return dict(scores)
AbsTaskReranking.evaluate = evaluate
class T2Reranking(AbsTaskReranking):
@property
def description(self):
return {
'name': 'T2Reranking',
'hf_hub_name': "C-MTEB/T2Reranking",
'description': 'T2Ranking: A large-scale Chinese Benchmark for Passage Ranking',
"reference": "https://arxiv.org/abs/2304.03679",
'type': 'Reranking',
'category': 's2p',
'eval_splits': ['dev'],
'eval_langs': ['zh'],
'main_score': 'map',
}
class T2RerankingZh2En(AbsTaskReranking):
@property
def description(self):
return {
'name': 'T2RerankingZh2En',
'hf_hub_name': "C-MTEB/T2Reranking_zh2en",
'description': 'T2Ranking: A large-scale Chinese Benchmark for Passage Ranking',
"reference": "https://arxiv.org/abs/2304.03679",
'type': 'Reranking',
'category': 's2p',
'eval_splits': ['dev'],
'eval_langs': ['zh2en'],
'main_score': 'map',
}
class T2RerankingEn2Zh(AbsTaskReranking):
@property
def description(self):
return {
'name': 'T2RerankingEn2Zh',
'hf_hub_name': "C-MTEB/T2Reranking_en2zh",
'description': 'T2Ranking: A large-scale Chinese Benchmark for Passage Ranking',
"reference": "https://arxiv.org/abs/2304.03679",
'type': 'Reranking',
'category': 's2p',
'eval_splits': ['dev'],
'eval_langs': ['en2zh'],
'main_score': 'map',
}
class MMarcoReranking(AbsTaskReranking):
@property
def description(self):
return {
'name': 'MMarcoReranking',
'hf_hub_name': "C-MTEB/Mmarco-reranking",
'description': 'mMARCO is a multilingual version of the MS MARCO passage ranking dataset',
"reference": "https://github.com/unicamp-dl/mMARCO",
'type': 'Reranking',
'category': 's2p',
'eval_splits': ['dev'],
'eval_langs': ['zh'],
'main_score': 'map',
}
class CMedQAv1(AbsTaskReranking):
@property
def description(self):
return {
'name': 'CMedQAv1',
"hf_hub_name": "C-MTEB/CMedQAv1-reranking",
'description': 'Chinese community medical question answering',
"reference": "https://github.com/zhangsheng93/cMedQA",
'type': 'Reranking',
'category': 's2p',
'eval_splits': ['test'],
'eval_langs': ['zh'],
'main_score': 'map',
}
class CMedQAv2(AbsTaskReranking):
@property
def description(self):
return {
'name': 'CMedQAv2',
"hf_hub_name": "C-MTEB/CMedQAv2-reranking",
'description': 'Chinese community medical question answering',
"reference": "https://github.com/zhangsheng93/cMedQA2",
'type': 'Reranking',
'category': 's2p',
'eval_splits': ['test'],
'eval_langs': ['zh'],
'main_score': 'map',
}
|