File size: 8,479 Bytes
dd0b4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
# and associated documentation files (the “Software”), to deal in the Software without 
# restriction, including without limitation the rights to use, copy, modify, merge, publish, 
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or 
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
# OTHER DEALINGS IN THE SOFTWARE.

import logging
import torch
from torch import nn
from transformers import AutoModel, PreTrainedModel
from torch.nn import functional as F


logger = logging.getLogger(__name__)


class ListTransformer(nn.Module):
    def __init__(self, num_layer, config, device) -> None:
        super().__init__()
        self.config = config
        self.device = device
        self.list_transformer_layer = nn.TransformerEncoderLayer(1792, self.config.num_attention_heads, batch_first=True, activation=F.gelu, norm_first=False)
        self.list_transformer = nn.TransformerEncoder(self.list_transformer_layer, num_layer)
        self.relu = nn.ReLU()
        self.query_embedding = QueryEmbedding(config, device)

        self.linear_score3 = nn.Linear(1792 * 2, 1792)
        self.linear_score2 = nn.Linear(1792 * 2, 1792)
        self.linear_score1 = nn.Linear(1792 * 2, 1)

    def forward(self, pair_features, pair_nums):
        pair_nums = [x + 1 for x in pair_nums]
        batch_pair_features = pair_features.split(pair_nums)

        pair_feature_query_passage_concat_list = []
        for i in range(len(batch_pair_features)):
            pair_feature_query = batch_pair_features[i][0].unsqueeze(0).repeat(pair_nums[i] - 1, 1)
            pair_feature_passage = batch_pair_features[i][1:]
            pair_feature_query_passage_concat_list.append(torch.cat([pair_feature_query, pair_feature_passage], dim=1))
        pair_feature_query_passage_concat = torch.cat(pair_feature_query_passage_concat_list, dim=0)

        batch_pair_features = nn.utils.rnn.pad_sequence(batch_pair_features, batch_first=True)

        query_embedding_tags = torch.zeros(batch_pair_features.size(0), batch_pair_features.size(1), dtype=torch.long, device=self.device)
        query_embedding_tags[:, 0] = 1
        batch_pair_features = self.query_embedding(batch_pair_features, query_embedding_tags)

        mask = self.generate_attention_mask(pair_nums)
        query_mask = self.generate_attention_mask_custom(pair_nums)
        pair_list_features = self.list_transformer(batch_pair_features, src_key_padding_mask=mask, mask=query_mask)

        output_pair_list_features = []
        output_query_list_features = []
        pair_features_after_transformer_list = []
        for idx, pair_num in enumerate(pair_nums):
            output_pair_list_features.append(pair_list_features[idx, 1:pair_num, :])
            output_query_list_features.append(pair_list_features[idx, 0, :])
            pair_features_after_transformer_list.append(pair_list_features[idx, :pair_num, :])

        pair_features_after_transformer_cat_query_list = []
        for idx, pair_num in enumerate(pair_nums):
            query_ft = output_query_list_features[idx].unsqueeze(0).repeat(pair_num - 1, 1)
            pair_features_after_transformer_cat_query = torch.cat([query_ft, output_pair_list_features[idx]], dim=1)
            pair_features_after_transformer_cat_query_list.append(pair_features_after_transformer_cat_query)
        pair_features_after_transformer_cat_query = torch.cat(pair_features_after_transformer_cat_query_list, dim=0)

        pair_feature_query_passage_concat = self.relu(self.linear_score2(pair_feature_query_passage_concat))
        pair_features_after_transformer_cat_query = self.relu(self.linear_score3(pair_features_after_transformer_cat_query))
        final_ft = torch.cat([pair_feature_query_passage_concat, pair_features_after_transformer_cat_query], dim=1)
        logits = self.linear_score1(final_ft).squeeze()

        return logits, torch.cat(pair_features_after_transformer_list, dim=0)

    def generate_attention_mask(self, pair_num):
        max_len = max(pair_num)
        batch_size = len(pair_num)
        mask = torch.zeros(batch_size, max_len, dtype=torch.bool, device=self.device)
        for i, length in enumerate(pair_num):
            mask[i, length:] = True
        return mask

    def generate_attention_mask_custom(self, pair_num):
        max_len = max(pair_num)

        mask = torch.zeros(max_len, max_len, dtype=torch.bool, device=self.device)
        mask[0, 1:] = True

        return mask


class QueryEmbedding(nn.Module):
    def __init__(self, config, device) -> None:
        super().__init__()
        self.query_embedding = nn.Embedding(2, 1792)
        self.layerNorm = nn.LayerNorm(1792)

    def forward(self, x, tags):
        query_embeddings = self.query_embedding(tags)
        x += query_embeddings
        x = self.layerNorm(x)
        return x


class CrossEncoder(nn.Module):
    def __init__(self, hf_model: PreTrainedModel, list_transformer_layer_4eval: int=None):
        super().__init__()
        self.hf_model = hf_model
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.sigmoid = nn.Sigmoid()

        self.config = self.hf_model.config
        self.config.output_hidden_states = True

        self.linear_in_embedding = nn.Linear(1024, 1792)
        self.list_transformer_layer = list_transformer_layer_4eval
        self.list_transformer = ListTransformer(self.list_transformer_layer, self.config, self.device)

    def forward(self, batch):
        if 'pair_num' in batch:
            pair_nums = batch.pop('pair_num').tolist()

        if self.training:
            pass
        else:
            split_batch = 400
            input_ids = batch['input_ids']
            attention_mask = batch['attention_mask']
            if sum(pair_nums) > split_batch:
                last_hidden_state_list = []
                input_ids_list = input_ids.split(split_batch)
                attention_mask_list = attention_mask.split(split_batch)
                for i in range(len(input_ids_list)):
                    last_hidden_state = self.hf_model(input_ids=input_ids_list[i], attention_mask=attention_mask_list[i], return_dict=True).hidden_states[-1]
                    last_hidden_state_list.append(last_hidden_state)
                last_hidden_state = torch.cat(last_hidden_state_list, dim=0)
            else:
                ranker_out = self.hf_model(**batch, return_dict=True)
                last_hidden_state = ranker_out.last_hidden_state

            pair_features = self.average_pooling(last_hidden_state, attention_mask)
            pair_features = self.linear_in_embedding(pair_features)

            logits, pair_features_after_list_transformer = self.list_transformer(pair_features, pair_nums)
            logits = self.sigmoid(logits)

            return logits

    @classmethod
    def from_pretrained_for_eval(cls, model_name_or_path, list_transformer_layer):
        hf_model = AutoModel.from_pretrained(model_name_or_path)
        reranker = cls(hf_model, list_transformer_layer)
        reranker.linear_in_embedding.load_state_dict(torch.load(model_name_or_path + '/linear_in_embedding.pt'))
        reranker.list_transformer.load_state_dict(torch.load(model_name_or_path + '/list_transformer.pt'))
        return reranker

    def average_pooling(self, hidden_state, attention_mask):
        extended_attention_mask = attention_mask.unsqueeze(-1).expand(hidden_state.size()).to(dtype=hidden_state.dtype)
        masked_hidden_state = hidden_state * extended_attention_mask
        sum_embeddings = torch.sum(masked_hidden_state, dim=1)
        sum_mask = extended_attention_mask.sum(dim=1)
        return sum_embeddings / sum_mask