File size: 33,858 Bytes
f225bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd070b
f225bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# From: https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py

from dataclasses import dataclass

import copy
import math
from typing import Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F

from transformers.modeling_utils import ModuleUtilsMixin
from transformers.modeling_outputs import ModelOutput, Seq2SeqModelOutput, BaseModelOutput
from transformers import PreTrainedModel

try:
    from .rms_norm import fast_rms_layernorm
except ImportError:
    fast_rms_layernorm = None

try:
    from .cross_entropy_loss import fast_cross_entropy_loss
except ImportError:
    fast_cross_entropy_loss = None

try:
    from .flash_attention_v2_bias import attention as flash_attention_triton
except ImportError:
    fast_cross_entropy_loss = None

try:
    from .gated_mlp import gated_mlp
except ImportError:
    gated_mlp = None

try:
    #from flash_attn import flash_attn_kvpacked_func, flash_attn_func
    from .fa2_compilable import flash_attn_kvpacked_func, flash_attn_func
except ImportError:
    flash_attn_kvpacked_func, flash_attn_func = None, None

from .attn_ref import attn_ref

from .configuration_flash_t5 import FlashT5Config
from .positional_encoding import ALiBiPositionalEncoding, RelativePositionalEncoding, RotaryPositionalEncoding

@dataclass
class EncoderOutput(ModelOutput):
    hidden_states: torch.FloatTensor = None
    attention_mask: torch.FloatTensor = None
    
@dataclass
class Seq2SeqLMOutput(ModelOutput):
    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None
    encoder_outputs: EncoderOutput = None

    
class FlashT5CrossEntropyLoss(nn.Module):
    def __init__(self, z_loss_factor=0.0, label_smoothing=0.0, use_triton_crossentropy=False):

        super().__init__()

        if use_triton_crossentropy and fast_cross_entropy_loss is None:
            raise ImportError("fast_cross_entropy_loss is not available")

        self.use_triton_crossentropy = use_triton_crossentropy
        self.z_loss_factor = z_loss_factor

        self.cross_entropy_loss = nn.CrossEntropyLoss(label_smoothing=label_smoothing)

    def compute_zloss(self, logits: torch.Tensor, z_loss: float):
        logits_sum = torch.logsumexp(logits, dim=-1, keepdim=True)
        log_z = torch.squeeze(logits_sum, axis=-1)
        total_z_loss = z_loss * torch.square(log_z)
        return total_z_loss.mean()

    def forward(self, logits, labels):

        if self.use_triton_crossentropy:
            return fast_cross_entropy_loss(logits, labels, z_loss_factor=self.z_loss_factor)

        # use standard method
        batch, seq_len, d = logits.shape
        logits_flatten = logits.float().view(batch*seq_len, d) # Must cast to float32 for numerical stability
        labels_flatten = labels.view(-1)
        loss = self.cross_entropy_loss(logits_flatten, labels_flatten)
        z_loss = 0.0
        if self.z_loss_factor != 0.0:
            z_loss = self.compute_zloss(logits_flatten[labels_flatten != -100],
                                   z_loss=self.z_loss_factor)
        return loss, z_loss

class FlashT5LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6, use_triton_layernorm=False):
        """
        Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
        """
        super().__init__()

        if use_triton_layernorm and fast_rms_layernorm is None:
            raise ImportError("fast_rms_layernorm is not available")

        self.use_triton_layernorm = use_triton_layernorm
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):

        if self.use_triton_layernorm:
            return fast_rms_layernorm(hidden_states, self.weight, self.variance_epsilon)

        # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
        # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
        # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
        # half-precision inputs is done in fp32

        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        # convert into half-precision if necessary
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)

        return self.weight * hidden_states

class FlashT5DenseAct(nn.Module):
    def __init__(self, config: FlashT5Config):
        super().__init__()
        self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.dropout = nn.Dropout(config.dropout_rate)
        self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()

    def forward(self, hidden_states):
        hidden_states = self.wi(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.dropout(hidden_states)
        if (
            isinstance(self.wo.weight, torch.Tensor)
            and hidden_states.dtype != self.wo.weight.dtype
            and self.wo.weight.dtype != torch.int8
        ):
            hidden_states = hidden_states.to(self.wo.weight.dtype)

        return hidden_states

class FlashT5DenseGatedAct(nn.Module):
    def __init__(self, config: FlashT5Config):
        super().__init__()
        self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.dropout = nn.Dropout(config.dropout_rate)
        self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()

        self.use_triton_gated_mlp = config.use_triton_gated_mlp
        if self.use_triton_gated_mlp and gated_mlp is None:
            raise ImportError("gated_mlp is not available")
        self.use_gelu_act = config.use_gelu_act

    def forward(self, hidden_states):

        if self.use_triton_gated_mlp:
            return gated_mlp(hidden_states, self.wi_0.weight, self.wi_1.weight, self.use_gelu_act)

        hidden_act = self.act(self.wi_0(hidden_states))
        hidden_linear = self.wi_1(hidden_states)
        hidden_states = hidden_act * hidden_linear
        hidden_states = self.dropout(hidden_states)

        return hidden_states

class FlashT5LayerFF(nn.Module):
    def __init__(self, config: FlashT5Config):
        super().__init__()
        if config.use_glu_mlp:
            self.act = FlashT5DenseGatedAct(config)
        else:
            self.act = FlashT5DenseAct(config)

        self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(self, hidden_states):
        forwarded_states = self.layer_norm(hidden_states).type_as(hidden_states)
        forwarded_states = self.act(forwarded_states)
        forwarded_states = self.wo(forwarded_states)
        hidden_states = hidden_states + self.dropout(forwarded_states)
        return hidden_states


class FlashT5Attention(nn.Module, ModuleUtilsMixin):
    def __init__(self, config: FlashT5Config, has_positional_encoding=False, is_causal=False):
        super().__init__()
        self.is_decoder = config.is_decoder
        self.has_positional_encoding = has_positional_encoding
        self.is_causal = is_causal
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.p_dropout = config.attention_dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim
        self.use_flash_attention = config.use_flash_attention
        self.position_encoding_type = config.position_encoding_type
        self.max_sequence_length = config.max_sequence_length
        self.softmax_scale = 1.0/math.sqrt(self.n_heads)
        self.use_full_bias_size = config.use_full_bias_size

        if self.use_flash_attention == "triton" and flash_attention_triton is None:
            raise ImportError("flash_attention_triton is not available")
        elif self.use_flash_attention == "fa2" and flash_attn_func is None:
            raise ImportError("Flash Attention 2 is not available")

        assert (self.p_dropout == 0.0) or (self.use_flash_attention != "triton"), "Triton attention does not support dropout"

        self.pe_encoding = None
        if self.position_encoding_type == "ALiBi" and has_positional_encoding:
            # build alibi matrix with an upper bound on seq length
            self.pe_encoding = ALiBiPositionalEncoding(self.max_sequence_length, self.n_heads, config.alibi_mode, config.use_randomized_position_encoding)
        elif self.position_encoding_type == "t5" and has_positional_encoding:
            self.pe_encoding = RelativePositionalEncoding(self.relative_attention_num_buckets, self.relative_attention_max_distance, self.n_heads, self.max_sequence_length, config.use_randomized_position_encoding)
        elif self.position_encoding_type == "RoPE":
            self.pe_encoding = RotaryPositionalEncoding(int(self.key_value_proj_dim * config.rotary_emb_fraction), self.max_sequence_length, config.rotary_base, config.rotary_interleaved, config.rotary_scale_base, config.use_randomized_position_encoding)

        self.Wq = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.Wk = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.Wv = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

    def forward(
        self,
        hidden_states,
        mask=None,
        key_value_states=None,
        position_bias=None,
    ):
        """
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
        """
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        batch_size, seq_length = hidden_states.shape[:2]
        key_length = seq_length if key_value_states is None else key_value_states.shape[1]
        q = self.Wq(hidden_states)
        if key_value_states is None:
            k = self.Wk(hidden_states)
            v = self.Wv(hidden_states)
        else:
            k = self.Wk(key_value_states)
            v = self.Wv(key_value_states)

        q = q.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim)
        k = k.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)
        v = v.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)

        if position_bias is None and self.pe_encoding is not None:
            q, k, v, position_bias = self.pe_encoding(q, k, v)

        if position_bias is not None and self.use_full_bias_size and (self.use_flash_attention == "fa2" or self.use_flash_attention == "triton"):
            position_bias = position_bias.expand(q.shape[0], q.shape[2], q.shape[1], k.shape[1]).contiguous()

        if self.use_flash_attention == "fa2":
            output = flash_attn_func(q, k, v, dropout_p=self.p_dropout, softmax_scale=self.softmax_scale, attn_bias=position_bias, causal=self.is_causal)
        elif self.use_flash_attention == "triton":
            q = q.permute(0, 2, 1, 3)
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            output = flash_attention_triton(q, k, v, position_bias, self.is_causal, self.softmax_scale)
            output = output.permute(0, 2, 1, 3)
        else: # use flash attention
            q = q.permute(0, 2, 1, 3)
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            output = attn_ref(q, k, v, position_bias, dropout_p=self.p_dropout, sm_scale=self.softmax_scale, causal=self.is_causal)
            output = output.permute(0, 2, 1, 3)

        output = self.o(output.reshape(output.shape[0], output.shape[1], self.inner_dim))
        return (output, position_bias)


class FlashT5LayerSelfAttention(nn.Module):
    def __init__(self, config, has_positional_encoding=False):
        super().__init__()
        self.self_attention = FlashT5Attention(config, has_positional_encoding=has_positional_encoding, is_causal=config.is_decoder)
        self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states).type_as(hidden_states)
        attention_output = self.self_attention(
            normed_hidden_states,
            mask=attention_mask,
            position_bias=position_bias,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]
        return outputs


class FlashT5LayerCrossAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.cross_attention = FlashT5Attention(config, has_positional_encoding=False)
        self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
        self,
        hidden_states,
        key_value_states,
        attention_mask=None,
        position_bias=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.cross_attention(
            normed_hidden_states,
            mask=attention_mask,
            key_value_states=key_value_states,
            position_bias=position_bias,
        )
        layer_output = hidden_states + self.dropout(attention_output[0])
        outputs = (layer_output,) + attention_output[1:]
        return outputs


class FlashT5Block(nn.Module):
    def __init__(self, config, has_positional_encoding=False):
        super().__init__()
        self.is_decoder = config.is_decoder

        self.self_attention_layer = FlashT5LayerSelfAttention(config, has_positional_encoding=has_positional_encoding)

        if self.is_decoder:
            self.cross_attention_layer = FlashT5LayerCrossAttention(config)

        self.ff_layer = FlashT5LayerFF(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
    ):
        self_attention_outputs = self.self_attention_layer(
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
        )
        hidden_states = self_attention_outputs[0]
        attention_outputs = self_attention_outputs[1:]  # Relative position weights

        if self.is_decoder and encoder_hidden_states is not None:
            cross_attention_outputs = self.cross_attention_layer(
                hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
            )
            hidden_states = cross_attention_outputs[0]

            # Keep relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[1:]

        # Apply Feed Forward layer
        hidden_states = self.ff_layer(hidden_states)

        outputs = (hidden_states,) + attention_outputs
        return outputs  # hidden-states, (self-attention position bias), (cross-attention position bias)

class FlashT5Stack(nn.Module, ModuleUtilsMixin):
    def __init__(self, config, embed_tokens):
        super().__init__()
        assert embed_tokens is not None

        self.config = config
        self.embed_tokens = embed_tokens
        self.is_decoder = config.is_decoder
        self.use_flash_attention = config.use_flash_attention

        self.block = nn.ModuleList(
            [FlashT5Block(config, has_positional_encoding=bool(i == 0)) for i in range(config.num_layers)]
        )

        self.final_layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None) -> BaseModelOutput:
        input_shape = input_ids.size()
        batch_size, seq_length = input_shape

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if torch.is_autocast_enabled() and input_ids.device.type == 'cuda':
            inputs_embeds = inputs_embeds.to(torch.get_autocast_gpu_dtype())

        # Masking
        if attention_mask is None:
            attention_mask = torch.ones(batch_size, seq_length, device=inputs_embeds.device, dtype=torch.bool)

        if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
            encoder_seq_length = encoder_hidden_states.shape[1]
            encoder_attention_mask = torch.ones(
                batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.bool
            )

        position_bias = None
        encoder_decoder_position_bias = None

        hidden_states = self.dropout(inputs_embeds)

        for _, layer_module in enumerate(self.block):
            layer_outputs = layer_module(
                hidden_states,
                attention_mask=attention_mask,
                position_bias=position_bias,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                encoder_decoder_position_bias=encoder_decoder_position_bias,
            )

            # We share the position biases between the layers - the first layer store them
            position_bias = layer_outputs[1]
            if self.is_decoder and encoder_hidden_states is not None:
                encoder_decoder_position_bias = layer_outputs[2]

            hidden_states = layer_outputs[0]

        hidden_states = self.final_layer_norm(hidden_states).type_as(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return BaseModelOutput(
            last_hidden_state=hidden_states
        )


class FlashT5PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = FlashT5Config
    base_model_prefix = "transformer"
    is_parallelizable = False
    supports_gradient_checkpointing = True
    _no_split_modules = ["FlashT5Block"]
    _keep_in_fp32_modules = []

    def _init_weights(self, module):
        factor = self.config.initializer_factor  # Used for testing weights initialization
        if isinstance(module, FlashT5LayerNorm):
            module.weight.data.fill_(factor * 1.0)
        elif isinstance(module, (FlashT5ForConditionalGeneration)):
            module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
            if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
                module.lm_head.weight.data.normal_(mean=0.0, std=factor * self.config.d_model ** -0.5)
        elif isinstance(module, FlashT5DenseGatedAct):
            d_ff, d_model = module.wi_0.weight.data.size()
            module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
            module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
        elif isinstance(module, FlashT5LayerFF):
            d_ff, d_model = module.wo.weight.data.size()
            module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
        elif isinstance(module, FlashT5Attention):
            d_model = self.config.d_model
            key_value_proj_dim = self.config.d_kv
            n_heads = self.config.num_heads
            module.Wq.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
            module.Wk.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
            module.Wv.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
            module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
            if module.has_positional_encoding:
                if hasattr(module.pe_encoding, "relative_attention_bias"):
                    module.pe_encoding.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))

    def _shift_right(self, input_ids):
        decoder_start_token_id = self.config.decoder_start_token_id
        pad_token_id = self.config.pad_token_id

        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
        shifted_input_ids[..., 0] = decoder_start_token_id

        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

        return shifted_input_ids


class FlashT5Model(FlashT5PreTrainedModel):

    def __init__(self, config: FlashT5Config):
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = FlashT5Stack(encoder_config, self.shared)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = FlashT5Stack(decoder_config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

        # Model parallel
        self.model_parallel = False
        self.device_map = None

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)
        self.decoder.set_input_embeddings(new_embeddings)

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds
            )

        hidden_states = encoder_outputs[0]

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask
        )

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            decoder_hidden_states=decoder_outputs.hidden_states,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
        )

class FlashT5ForConditionalGeneration(FlashT5PreTrainedModel):

    def __init__(self, config: FlashT5Config):
        super().__init__(config)
        config.is_encoder_decoder = False
        assert not config.tie_word_embeddings

        self.config = config
        self.model_dim = config.d_model
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        self.encoder = FlashT5Stack(encoder_config, self.shared)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = FlashT5Stack(decoder_config, self.shared)

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        self.loss_fct = FlashT5CrossEntropyLoss(z_loss_factor=config.z_loss,
                                                label_smoothing=config.label_smoothing,
                                                use_triton_crossentropy=config.use_triton_crossentropy)

        # Initialize weights and apply final processing
        self.post_init()

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        # do nothing
        model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask}

        return model_inputs

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value

    def generate(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        max_length = 32,
        **kwargs,
    ) -> torch.LongTensor:
        """
            input_ids: B x L_encoder, int64
            attention_mask: B x L_encoder, int64
                1 for tokens to attend to, 0 for tokens to ignore

            Generation:
                Starts with 0, ends with 1, padding is 0

            # For 20 input/outputs, the diff between my implementation and HF is 9.8s vs 11.4s
        """
        B, _ = input_ids.size()
        labels = torch.zeros(B, 1, dtype=torch.long, device=input_ids.device)
        encoder_outputs = None

        for _ in range(max_length):
            out = self.forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=labels,
                encoder_outputs=encoder_outputs,
            )
            encoder_outputs = out.encoder_outputs
            top_labels = out.logits[:, -1].argmax(-1).unsqueeze(-1)
            labels = torch.cat([labels, top_labels], dim=-1)

            if (labels == 1).sum(-1).clamp(min=0, max=1).sum().item() == B:
                break

        labels[:, -1] = 1

        # Mask out the padding, i.e., all positions after the first 1 with 0
        B, L = labels.size()
        mask = torch.arange(L, device=labels.device).unsqueeze(0) <= (labels == 1).long().argmax(-1).unsqueeze(-1)
        labels = labels.masked_fill(~mask, 0)

        return labels

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        encoder_outputs = None,
    ) -> Seq2SeqLMOutput:
        """
            input_ids: B x L_encoder, int64
            attention_mask: B x L_encoder, int64
                1 for tokens to attend to, 0 for tokens to ignore
            labels: B x L_decoder, int64
        """
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
            )

        hidden_states = encoder_outputs.hidden_states

        if labels is not None and decoder_input_ids is None:
            decoder_input_ids = self._shift_right(labels)

        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
        )

        sequence_output = decoder_outputs[0]
        lm_logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            loss, z_loss = self.loss_fct(lm_logits, labels)
            loss += z_loss

        return Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            encoder_outputs=encoder_outputs,
        )



class FlashT5EncoderModel(FlashT5PreTrainedModel):
    _tied_weights_keys = ["encoder.embed_tokens.weight"]

    def __init__(self, config: FlashT5Config):
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = FlashT5Stack(encoder_config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

        # Model parallel
        self.model_parallel = False
        self.device_map = None

    
    def parallelize(self, device_map=None):
        warnings.warn(
            "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
            " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
            " 'block.1': 1, ...}",
            FutureWarning,
        )
        self.device_map = (
            get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.encoder.block))
        self.encoder.parallelize(self.device_map)
        self.model_parallel = True

    def deparallelize(self):
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
        self.encoder.deparallelize()
        self.encoder = self.encoder.to("cpu")
        self.model_parallel = False
        self.device_map = None
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)

    def get_encoder(self):
        return self.encoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, T5EncoderModel

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
        >>> model = T5EncoderModel.from_pretrained("t5-small")
        >>> input_ids = tokenizer(
        ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
        ... ).input_ids  # Batch size 1
        >>> outputs = model(input_ids=input_ids)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return encoder_outputs