|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
import copy |
|
from typing import Optional, Union, Tuple, List |
|
from transformers.modeling_outputs import ( |
|
Seq2SeqQuestionAnsweringModelOutput, |
|
QuestionAnsweringModelOutput, |
|
TokenClassifierOutput, |
|
BaseModelOutput, |
|
Seq2SeqSequenceClassifierOutput, |
|
SequenceClassifierOutput |
|
) |
|
|
|
from .modeling_flash_t5 import FlashT5PreTrainedModel, FlashT5Stack, FlashT5Model, FlashT5EncoderModel |
|
from .configuration_flash_t5 import FlashT5Config |
|
|
|
|
|
|
|
class FlashT5ForTokenClassification(FlashT5PreTrainedModel): |
|
|
|
def __init__(self, config: FlashT5Config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
self.encoder = FlashT5Stack(config, self.shared) |
|
self.dropout = nn.Dropout(config.classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.classifier.weight.data.normal_(mean=0.0, std=config.initializer_factor * 1.0) |
|
self.classifier.bias.data.zero_() |
|
|
|
self.model_parallel = False |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits, outputs[2:-1]) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class FlashT5ClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config: FlashT5Config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.d_model, config.d_model) |
|
self.dropout = nn.Dropout(p=config.classifier_dropout) |
|
self.out_proj = nn.Linear(config.d_model, config.num_labels) |
|
|
|
|
|
factor = config.initializer_factor |
|
self.dense.weight.data.normal_(mean=0.0, std=factor * ((config.d_model) ** -0.5)) |
|
if hasattr(self.dense, "bias") and self.dense.bias is not None: |
|
self.dense.bias.data.zero_() |
|
self.out_proj.weight.data.normal_(mean=0.0, std=factor * ((config.d_model) ** -0.5)) |
|
if hasattr(self.out_proj, "bias") and self.out_proj.bias is not None: |
|
self.out_proj.bias.data.zero_() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = torch.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.out_proj(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class FlashT5ForSequenceClassification(FlashT5PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: FlashT5Config): |
|
super().__init__(config) |
|
self.model_dim = config.d_model |
|
self.config.problem_type = None |
|
self.config.is_encoder_decoder = False |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.is_encoder_decoder = False |
|
encoder_config.use_cache = False |
|
self.encoder = FlashT5Stack(encoder_config, self.shared) |
|
self.classification_head = FlashT5ClassificationHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
if input_ids is None and inputs_embeds is not None: |
|
raise NotImplementedError( |
|
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" |
|
) |
|
|
|
|
|
outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
|
|
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) |
|
|
|
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
batch_size, _, hidden_size = sequence_output.shape |
|
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] |
|
logits = self.classification_head(sentence_representation) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.config.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = nn.MSELoss() |
|
if self.config.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions |
|
) |
|
|
|
|
|
class FlashT5ForQuestionAnswering(FlashT5PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: FlashT5Config): |
|
super().__init__(config) |
|
self.transformer = FlashT5EncoderModel(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.Tensor] = None, |
|
end_positions: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_outputs = self.transformer( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = encoder_outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + encoder_outputs[1:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class FlashT5ForQuestionAnswering(FlashT5PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: FlashT5Config): |
|
super().__init__(config) |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = FlashT5Stack(encoder_config, self.shared) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
self.qa_outputs.weight.data.normal_(mean=0.0, std=config.initializer_factor * 1.0) |
|
self.qa_outputs.bias.data.zero_() |
|
|
|
self.model_parallel = False |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, MTxEncoderForQuestionAnswering |
|
>>> tokenizer = AutoTokenizer.from_pretrained("MTx-small") |
|
>>> model = MTxEncoderForQuestionAnswering.from_pretrained("MTx-small") |
|
>>> input_ids = tokenizer( |
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model(input_ids=input_ids) |
|
>>> start_logits = outputs.start_logits |
|
>>> end_logits = outputs.end_logits |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.encoder( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
) |
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[1:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |