bourdoiscatie
commited on
Delete modeling_flash_t5(1).py
Browse files- modeling_flash_t5(1).py +0 -840
modeling_flash_t5(1).py
DELETED
@@ -1,840 +0,0 @@
|
|
1 |
-
# From: https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
|
2 |
-
|
3 |
-
from dataclasses import dataclass
|
4 |
-
|
5 |
-
import copy
|
6 |
-
import math
|
7 |
-
from typing import Optional, Tuple, Union
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from torch import nn
|
11 |
-
from torch.nn import CrossEntropyLoss
|
12 |
-
import torch.nn.functional as F
|
13 |
-
|
14 |
-
from transformers.modeling_utils import ModuleUtilsMixin
|
15 |
-
from transformers.modeling_outputs import ModelOutput, Seq2SeqModelOutput, BaseModelOutput
|
16 |
-
from transformers import PreTrainedModel
|
17 |
-
|
18 |
-
try:
|
19 |
-
from .rms_norm import fast_rms_layernorm
|
20 |
-
except ImportError:
|
21 |
-
fast_rms_layernorm = None
|
22 |
-
|
23 |
-
try:
|
24 |
-
from .cross_entropy_loss import fast_cross_entropy_loss
|
25 |
-
except ImportError:
|
26 |
-
fast_cross_entropy_loss = None
|
27 |
-
|
28 |
-
try:
|
29 |
-
from .flash_attention_v2_bias import attention as flash_attention_triton
|
30 |
-
except ImportError:
|
31 |
-
fast_cross_entropy_loss = None
|
32 |
-
|
33 |
-
try:
|
34 |
-
from .gated_mlp import gated_mlp
|
35 |
-
except ImportError:
|
36 |
-
gated_mlp = None
|
37 |
-
|
38 |
-
try:
|
39 |
-
#from flash_attn import flash_attn_kvpacked_func, flash_attn_func
|
40 |
-
from .fa2_compilable import flash_attn_kvpacked_func, flash_attn_func
|
41 |
-
except ImportError:
|
42 |
-
flash_attn_kvpacked_func, flash_attn_func = None, None
|
43 |
-
|
44 |
-
from .attn_ref import attn_ref
|
45 |
-
|
46 |
-
from .configuration_flash_t5 import FlashT5Config
|
47 |
-
from .positional_encoding import ALiBiPositionalEncoding, RelativePositionalEncoding, RotaryPositionalEncoding
|
48 |
-
|
49 |
-
@dataclass
|
50 |
-
class EncoderOutput(ModelOutput):
|
51 |
-
hidden_states: torch.FloatTensor = None
|
52 |
-
attention_mask: torch.FloatTensor = None
|
53 |
-
|
54 |
-
@dataclass
|
55 |
-
class Seq2SeqLMOutput(ModelOutput):
|
56 |
-
loss: torch.FloatTensor = None
|
57 |
-
logits: torch.FloatTensor = None
|
58 |
-
encoder_outputs: EncoderOutput = None
|
59 |
-
|
60 |
-
|
61 |
-
class FlashT5CrossEntropyLoss(nn.Module):
|
62 |
-
def __init__(self, z_loss_factor=0.0, label_smoothing=0.0, use_triton_crossentropy=False):
|
63 |
-
|
64 |
-
super().__init__()
|
65 |
-
|
66 |
-
if use_triton_crossentropy and fast_cross_entropy_loss is None:
|
67 |
-
raise ImportError("fast_cross_entropy_loss is not available")
|
68 |
-
|
69 |
-
self.use_triton_crossentropy = use_triton_crossentropy
|
70 |
-
self.z_loss_factor = z_loss_factor
|
71 |
-
|
72 |
-
self.cross_entropy_loss = nn.CrossEntropyLoss(label_smoothing=label_smoothing)
|
73 |
-
|
74 |
-
def compute_zloss(self, logits: torch.Tensor, z_loss: float):
|
75 |
-
logits_sum = torch.logsumexp(logits, dim=-1, keepdim=True)
|
76 |
-
log_z = torch.squeeze(logits_sum, axis=-1)
|
77 |
-
total_z_loss = z_loss * torch.square(log_z)
|
78 |
-
return total_z_loss.mean()
|
79 |
-
|
80 |
-
def forward(self, logits, labels):
|
81 |
-
|
82 |
-
if self.use_triton_crossentropy:
|
83 |
-
return fast_cross_entropy_loss(logits, labels, z_loss_factor=self.z_loss_factor)
|
84 |
-
|
85 |
-
# use standard method
|
86 |
-
batch, seq_len, d = logits.shape
|
87 |
-
logits_flatten = logits.float().view(batch*seq_len, d) # Must cast to float32 for numerical stability
|
88 |
-
labels_flatten = labels.view(-1)
|
89 |
-
loss = self.cross_entropy_loss(logits_flatten, labels_flatten)
|
90 |
-
z_loss = 0.0
|
91 |
-
if self.z_loss_factor != 0.0:
|
92 |
-
z_loss = self.compute_zloss(logits_flatten[labels_flatten != -100],
|
93 |
-
z_loss=self.z_loss_factor)
|
94 |
-
return loss, z_loss
|
95 |
-
|
96 |
-
class FlashT5LayerNorm(nn.Module):
|
97 |
-
def __init__(self, hidden_size, eps=1e-6, use_triton_layernorm=False):
|
98 |
-
"""
|
99 |
-
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
100 |
-
"""
|
101 |
-
super().__init__()
|
102 |
-
|
103 |
-
if use_triton_layernorm and fast_rms_layernorm is None:
|
104 |
-
raise ImportError("fast_rms_layernorm is not available")
|
105 |
-
|
106 |
-
self.use_triton_layernorm = use_triton_layernorm
|
107 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
108 |
-
self.variance_epsilon = eps
|
109 |
-
|
110 |
-
def forward(self, hidden_states):
|
111 |
-
|
112 |
-
if self.use_triton_layernorm:
|
113 |
-
return fast_rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
|
114 |
-
|
115 |
-
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
116 |
-
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
117 |
-
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
118 |
-
# half-precision inputs is done in fp32
|
119 |
-
|
120 |
-
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
121 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
122 |
-
|
123 |
-
# convert into half-precision if necessary
|
124 |
-
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
125 |
-
hidden_states = hidden_states.to(self.weight.dtype)
|
126 |
-
|
127 |
-
return self.weight * hidden_states
|
128 |
-
|
129 |
-
class FlashT5DenseAct(nn.Module):
|
130 |
-
def __init__(self, config: FlashT5Config):
|
131 |
-
super().__init__()
|
132 |
-
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
133 |
-
self.dropout = nn.Dropout(config.dropout_rate)
|
134 |
-
self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()
|
135 |
-
|
136 |
-
def forward(self, hidden_states):
|
137 |
-
hidden_states = self.wi(hidden_states)
|
138 |
-
hidden_states = self.act(hidden_states)
|
139 |
-
hidden_states = self.dropout(hidden_states)
|
140 |
-
if (
|
141 |
-
isinstance(self.wo.weight, torch.Tensor)
|
142 |
-
and hidden_states.dtype != self.wo.weight.dtype
|
143 |
-
and self.wo.weight.dtype != torch.int8
|
144 |
-
):
|
145 |
-
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
146 |
-
|
147 |
-
return hidden_states
|
148 |
-
|
149 |
-
class FlashT5DenseGatedAct(nn.Module):
|
150 |
-
def __init__(self, config: FlashT5Config):
|
151 |
-
super().__init__()
|
152 |
-
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
153 |
-
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
154 |
-
self.dropout = nn.Dropout(config.dropout_rate)
|
155 |
-
self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()
|
156 |
-
|
157 |
-
self.use_triton_gated_mlp = config.use_triton_gated_mlp
|
158 |
-
if self.use_triton_gated_mlp and gated_mlp is None:
|
159 |
-
raise ImportError("gated_mlp is not available")
|
160 |
-
self.use_gelu_act = config.use_gelu_act
|
161 |
-
|
162 |
-
def forward(self, hidden_states):
|
163 |
-
|
164 |
-
if self.use_triton_gated_mlp:
|
165 |
-
return gated_mlp(hidden_states, self.wi_0.weight, self.wi_1.weight, self.use_gelu_act)
|
166 |
-
|
167 |
-
hidden_act = self.act(self.wi_0(hidden_states))
|
168 |
-
hidden_linear = self.wi_1(hidden_states)
|
169 |
-
hidden_states = hidden_act * hidden_linear
|
170 |
-
hidden_states = self.dropout(hidden_states)
|
171 |
-
|
172 |
-
return hidden_states
|
173 |
-
|
174 |
-
class FlashT5LayerFF(nn.Module):
|
175 |
-
def __init__(self, config: FlashT5Config):
|
176 |
-
super().__init__()
|
177 |
-
if config.use_glu_mlp:
|
178 |
-
self.act = FlashT5DenseGatedAct(config)
|
179 |
-
else:
|
180 |
-
self.act = FlashT5DenseAct(config)
|
181 |
-
|
182 |
-
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
183 |
-
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
184 |
-
self.dropout = nn.Dropout(config.dropout_rate)
|
185 |
-
|
186 |
-
def forward(self, hidden_states):
|
187 |
-
forwarded_states = self.layer_norm(hidden_states).type_as(hidden_states)
|
188 |
-
forwarded_states = self.act(forwarded_states)
|
189 |
-
forwarded_states = self.wo(forwarded_states)
|
190 |
-
hidden_states = hidden_states + self.dropout(forwarded_states)
|
191 |
-
return hidden_states
|
192 |
-
|
193 |
-
|
194 |
-
class FlashT5Attention(nn.Module, ModuleUtilsMixin):
|
195 |
-
def __init__(self, config: FlashT5Config, has_positional_encoding=False, is_causal=False):
|
196 |
-
super().__init__()
|
197 |
-
self.is_decoder = config.is_decoder
|
198 |
-
self.has_positional_encoding = has_positional_encoding
|
199 |
-
self.is_causal = is_causal
|
200 |
-
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
201 |
-
self.relative_attention_max_distance = config.relative_attention_max_distance
|
202 |
-
self.d_model = config.d_model
|
203 |
-
self.key_value_proj_dim = config.d_kv
|
204 |
-
self.n_heads = config.num_heads
|
205 |
-
self.p_dropout = config.attention_dropout_rate
|
206 |
-
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
207 |
-
self.use_flash_attention = config.use_flash_attention
|
208 |
-
self.position_encoding_type = config.position_encoding_type
|
209 |
-
self.max_sequence_length = config.max_sequence_length
|
210 |
-
self.softmax_scale = 1.0/math.sqrt(self.n_heads)
|
211 |
-
self.use_full_bias_size = config.use_full_bias_size
|
212 |
-
|
213 |
-
if self.use_flash_attention == "triton" and flash_attention_triton is None:
|
214 |
-
raise ImportError("flash_attention_triton is not available")
|
215 |
-
elif self.use_flash_attention == "fa2" and flash_attn_func is None:
|
216 |
-
raise ImportError("Flash Attention 2 is not available")
|
217 |
-
|
218 |
-
assert (self.p_dropout == 0.0) or (self.use_flash_attention != "triton"), "Triton attention does not support dropout"
|
219 |
-
|
220 |
-
self.pe_encoding = None
|
221 |
-
if self.position_encoding_type == "ALiBi" and has_positional_encoding:
|
222 |
-
# build alibi matrix with an upper bound on seq length
|
223 |
-
self.pe_encoding = ALiBiPositionalEncoding(self.max_sequence_length, self.n_heads, config.alibi_mode, config.use_randomized_position_encoding)
|
224 |
-
elif self.position_encoding_type == "t5" and has_positional_encoding:
|
225 |
-
self.pe_encoding = RelativePositionalEncoding(self.relative_attention_num_buckets, self.relative_attention_max_distance, self.n_heads, self.max_sequence_length, config.use_randomized_position_encoding)
|
226 |
-
elif self.position_encoding_type == "RoPE":
|
227 |
-
self.pe_encoding = RotaryPositionalEncoding(int(self.key_value_proj_dim * config.rotary_emb_fraction), self.max_sequence_length, config.rotary_base, config.rotary_interleaved, config.rotary_scale_base, config.use_randomized_position_encoding)
|
228 |
-
|
229 |
-
self.Wq = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
230 |
-
self.Wk = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
231 |
-
self.Wv = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
232 |
-
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
233 |
-
|
234 |
-
def forward(
|
235 |
-
self,
|
236 |
-
hidden_states,
|
237 |
-
mask=None,
|
238 |
-
key_value_states=None,
|
239 |
-
position_bias=None,
|
240 |
-
):
|
241 |
-
"""
|
242 |
-
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
243 |
-
"""
|
244 |
-
# Input is (batch_size, seq_length, dim)
|
245 |
-
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
246 |
-
batch_size, seq_length = hidden_states.shape[:2]
|
247 |
-
key_length = seq_length if key_value_states is None else key_value_states.shape[1]
|
248 |
-
q = self.Wq(hidden_states)
|
249 |
-
if key_value_states is None:
|
250 |
-
k = self.Wk(hidden_states)
|
251 |
-
v = self.Wv(hidden_states)
|
252 |
-
else:
|
253 |
-
k = self.Wk(key_value_states)
|
254 |
-
v = self.Wv(key_value_states)
|
255 |
-
|
256 |
-
q = q.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim)
|
257 |
-
k = k.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)
|
258 |
-
v = v.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)
|
259 |
-
|
260 |
-
if position_bias is None and self.pe_encoding is not None:
|
261 |
-
q, k, v, position_bias = self.pe_encoding(q, k, v)
|
262 |
-
|
263 |
-
if position_bias is not None and self.use_full_bias_size and (self.use_flash_attention == "fa2" or self.use_flash_attention == "triton"):
|
264 |
-
position_bias = position_bias.expand(q.shape[0], q.shape[2], q.shape[1], k.shape[1]).contiguous()
|
265 |
-
|
266 |
-
if self.use_flash_attention == "fa2":
|
267 |
-
output = flash_attn_func(q, k, v, dropout_p=self.p_dropout, softmax_scale=self.softmax_scale, attn_bias=position_bias, causal=self.is_causal)
|
268 |
-
elif self.use_flash_attention == "triton":
|
269 |
-
q = q.permute(0, 2, 1, 3)
|
270 |
-
k = k.permute(0, 2, 1, 3)
|
271 |
-
v = v.permute(0, 2, 1, 3)
|
272 |
-
output = flash_attention_triton(q, k, v, position_bias, self.is_causal, self.softmax_scale)
|
273 |
-
output = output.permute(0, 2, 1, 3)
|
274 |
-
else: # use flash attention
|
275 |
-
q = q.permute(0, 2, 1, 3)
|
276 |
-
k = k.permute(0, 2, 1, 3)
|
277 |
-
v = v.permute(0, 2, 1, 3)
|
278 |
-
output = attn_ref(q, k, v, position_bias, dropout_p=self.p_dropout, sm_scale=self.softmax_scale, causal=self.is_causal)
|
279 |
-
output = output.permute(0, 2, 1, 3)
|
280 |
-
|
281 |
-
output = self.o(output.reshape(output.shape[0], output.shape[1], self.inner_dim))
|
282 |
-
return (output, position_bias)
|
283 |
-
|
284 |
-
|
285 |
-
class FlashT5LayerSelfAttention(nn.Module):
|
286 |
-
def __init__(self, config, has_positional_encoding=False):
|
287 |
-
super().__init__()
|
288 |
-
self.self_attention = FlashT5Attention(config, has_positional_encoding=has_positional_encoding, is_causal=config.is_decoder)
|
289 |
-
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
290 |
-
self.dropout = nn.Dropout(config.dropout_rate)
|
291 |
-
|
292 |
-
def forward(
|
293 |
-
self,
|
294 |
-
hidden_states,
|
295 |
-
attention_mask=None,
|
296 |
-
position_bias=None,
|
297 |
-
):
|
298 |
-
normed_hidden_states = self.layer_norm(hidden_states).type_as(hidden_states)
|
299 |
-
attention_output = self.self_attention(
|
300 |
-
normed_hidden_states,
|
301 |
-
mask=attention_mask,
|
302 |
-
position_bias=position_bias,
|
303 |
-
)
|
304 |
-
hidden_states = hidden_states + self.dropout(attention_output[0])
|
305 |
-
outputs = (hidden_states,) + attention_output[1:]
|
306 |
-
return outputs
|
307 |
-
|
308 |
-
|
309 |
-
class FlashT5LayerCrossAttention(nn.Module):
|
310 |
-
def __init__(self, config):
|
311 |
-
super().__init__()
|
312 |
-
self.cross_attention = FlashT5Attention(config, has_positional_encoding=False)
|
313 |
-
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
314 |
-
self.dropout = nn.Dropout(config.dropout_rate)
|
315 |
-
|
316 |
-
def forward(
|
317 |
-
self,
|
318 |
-
hidden_states,
|
319 |
-
key_value_states,
|
320 |
-
attention_mask=None,
|
321 |
-
position_bias=None,
|
322 |
-
):
|
323 |
-
normed_hidden_states = self.layer_norm(hidden_states)
|
324 |
-
attention_output = self.cross_attention(
|
325 |
-
normed_hidden_states,
|
326 |
-
mask=attention_mask,
|
327 |
-
key_value_states=key_value_states,
|
328 |
-
position_bias=position_bias,
|
329 |
-
)
|
330 |
-
layer_output = hidden_states + self.dropout(attention_output[0])
|
331 |
-
outputs = (layer_output,) + attention_output[1:]
|
332 |
-
return outputs
|
333 |
-
|
334 |
-
|
335 |
-
class FlashT5Block(nn.Module):
|
336 |
-
def __init__(self, config, has_positional_encoding=False):
|
337 |
-
super().__init__()
|
338 |
-
self.is_decoder = config.is_decoder
|
339 |
-
|
340 |
-
self.self_attention_layer = FlashT5LayerSelfAttention(config, has_positional_encoding=has_positional_encoding)
|
341 |
-
|
342 |
-
if self.is_decoder:
|
343 |
-
self.cross_attention_layer = FlashT5LayerCrossAttention(config)
|
344 |
-
|
345 |
-
self.ff_layer = FlashT5LayerFF(config)
|
346 |
-
|
347 |
-
def forward(
|
348 |
-
self,
|
349 |
-
hidden_states,
|
350 |
-
attention_mask=None,
|
351 |
-
position_bias=None,
|
352 |
-
encoder_hidden_states=None,
|
353 |
-
encoder_attention_mask=None,
|
354 |
-
encoder_decoder_position_bias=None,
|
355 |
-
):
|
356 |
-
self_attention_outputs = self.self_attention_layer(
|
357 |
-
hidden_states,
|
358 |
-
attention_mask=attention_mask,
|
359 |
-
position_bias=position_bias,
|
360 |
-
)
|
361 |
-
hidden_states = self_attention_outputs[0]
|
362 |
-
attention_outputs = self_attention_outputs[1:] # Relative position weights
|
363 |
-
|
364 |
-
if self.is_decoder and encoder_hidden_states is not None:
|
365 |
-
cross_attention_outputs = self.cross_attention_layer(
|
366 |
-
hidden_states,
|
367 |
-
key_value_states=encoder_hidden_states,
|
368 |
-
attention_mask=encoder_attention_mask,
|
369 |
-
position_bias=encoder_decoder_position_bias,
|
370 |
-
)
|
371 |
-
hidden_states = cross_attention_outputs[0]
|
372 |
-
|
373 |
-
# Keep relative position weights
|
374 |
-
attention_outputs = attention_outputs + cross_attention_outputs[1:]
|
375 |
-
|
376 |
-
# Apply Feed Forward layer
|
377 |
-
hidden_states = self.ff_layer(hidden_states)
|
378 |
-
|
379 |
-
outputs = (hidden_states,) + attention_outputs
|
380 |
-
return outputs # hidden-states, (self-attention position bias), (cross-attention position bias)
|
381 |
-
|
382 |
-
class FlashT5Stack(nn.Module, ModuleUtilsMixin):
|
383 |
-
def __init__(self, config, embed_tokens):
|
384 |
-
super().__init__()
|
385 |
-
assert embed_tokens is not None
|
386 |
-
|
387 |
-
self.config = config
|
388 |
-
self.embed_tokens = embed_tokens
|
389 |
-
self.is_decoder = config.is_decoder
|
390 |
-
self.use_flash_attention = config.use_flash_attention
|
391 |
-
|
392 |
-
self.block = nn.ModuleList(
|
393 |
-
[FlashT5Block(config, has_positional_encoding=bool(i == 0)) for i in range(config.num_layers)]
|
394 |
-
)
|
395 |
-
|
396 |
-
self.final_layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
|
397 |
-
self.dropout = nn.Dropout(config.dropout_rate)
|
398 |
-
|
399 |
-
def forward(
|
400 |
-
self,
|
401 |
-
input_ids=None,
|
402 |
-
attention_mask=None,
|
403 |
-
encoder_hidden_states=None,
|
404 |
-
encoder_attention_mask=None,
|
405 |
-
inputs_embeds=None,
|
406 |
-
head_mask=None,
|
407 |
-
cross_attn_head_mask=None,
|
408 |
-
past_key_values=None,
|
409 |
-
use_cache=None,
|
410 |
-
output_attentions=None,
|
411 |
-
output_hidden_states=None,
|
412 |
-
return_dict=None) -> BaseModelOutput:
|
413 |
-
input_shape = input_ids.size()
|
414 |
-
batch_size, seq_length = input_shape
|
415 |
-
|
416 |
-
if inputs_embeds is None:
|
417 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
418 |
-
|
419 |
-
if torch.is_autocast_enabled() and input_ids.device.type == 'cuda':
|
420 |
-
inputs_embeds = inputs_embeds.to(torch.get_autocast_gpu_dtype())
|
421 |
-
|
422 |
-
# Masking
|
423 |
-
if attention_mask is None:
|
424 |
-
attention_mask = torch.ones(batch_size, seq_length, device=inputs_embeds.device, dtype=torch.bool)
|
425 |
-
|
426 |
-
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
427 |
-
encoder_seq_length = encoder_hidden_states.shape[1]
|
428 |
-
encoder_attention_mask = torch.ones(
|
429 |
-
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.bool
|
430 |
-
)
|
431 |
-
|
432 |
-
position_bias = None
|
433 |
-
encoder_decoder_position_bias = None
|
434 |
-
|
435 |
-
hidden_states = self.dropout(inputs_embeds)
|
436 |
-
|
437 |
-
for _, layer_module in enumerate(self.block):
|
438 |
-
layer_outputs = layer_module(
|
439 |
-
hidden_states,
|
440 |
-
attention_mask=attention_mask,
|
441 |
-
position_bias=position_bias,
|
442 |
-
encoder_hidden_states=encoder_hidden_states,
|
443 |
-
encoder_attention_mask=encoder_attention_mask,
|
444 |
-
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
445 |
-
)
|
446 |
-
|
447 |
-
# We share the position biases between the layers - the first layer store them
|
448 |
-
position_bias = layer_outputs[1]
|
449 |
-
if self.is_decoder and encoder_hidden_states is not None:
|
450 |
-
encoder_decoder_position_bias = layer_outputs[2]
|
451 |
-
|
452 |
-
hidden_states = layer_outputs[0]
|
453 |
-
|
454 |
-
hidden_states = self.final_layer_norm(hidden_states).type_as(hidden_states)
|
455 |
-
hidden_states = self.dropout(hidden_states)
|
456 |
-
|
457 |
-
return BaseModelOutput(
|
458 |
-
last_hidden_state=hidden_states
|
459 |
-
)
|
460 |
-
|
461 |
-
|
462 |
-
class FlashT5PreTrainedModel(PreTrainedModel):
|
463 |
-
"""
|
464 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
465 |
-
models.
|
466 |
-
"""
|
467 |
-
|
468 |
-
config_class = FlashT5Config
|
469 |
-
base_model_prefix = "transformer"
|
470 |
-
is_parallelizable = False
|
471 |
-
supports_gradient_checkpointing = True
|
472 |
-
_no_split_modules = ["FlashT5Block"]
|
473 |
-
_keep_in_fp32_modules = []
|
474 |
-
|
475 |
-
def _init_weights(self, module):
|
476 |
-
factor = self.config.initializer_factor # Used for testing weights initialization
|
477 |
-
if isinstance(module, FlashT5LayerNorm):
|
478 |
-
module.weight.data.fill_(factor * 1.0)
|
479 |
-
elif isinstance(module, (FlashT5ForConditionalGeneration)):
|
480 |
-
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
481 |
-
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
482 |
-
module.lm_head.weight.data.normal_(mean=0.0, std=factor * self.config.d_model ** -0.5)
|
483 |
-
elif isinstance(module, FlashT5DenseGatedAct):
|
484 |
-
d_ff, d_model = module.wi_0.weight.data.size()
|
485 |
-
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
486 |
-
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
487 |
-
elif isinstance(module, FlashT5LayerFF):
|
488 |
-
d_ff, d_model = module.wo.weight.data.size()
|
489 |
-
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
|
490 |
-
elif isinstance(module, FlashT5Attention):
|
491 |
-
d_model = self.config.d_model
|
492 |
-
key_value_proj_dim = self.config.d_kv
|
493 |
-
n_heads = self.config.num_heads
|
494 |
-
module.Wq.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
495 |
-
module.Wk.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
496 |
-
module.Wv.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
497 |
-
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
498 |
-
if module.has_positional_encoding:
|
499 |
-
if hasattr(module.pe_encoding, "relative_attention_bias"):
|
500 |
-
module.pe_encoding.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
501 |
-
|
502 |
-
def _shift_right(self, input_ids):
|
503 |
-
decoder_start_token_id = self.config.decoder_start_token_id
|
504 |
-
pad_token_id = self.config.pad_token_id
|
505 |
-
|
506 |
-
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
507 |
-
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
508 |
-
shifted_input_ids[..., 0] = decoder_start_token_id
|
509 |
-
|
510 |
-
# replace possible -100 values in labels by `pad_token_id`
|
511 |
-
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
512 |
-
|
513 |
-
return shifted_input_ids
|
514 |
-
|
515 |
-
|
516 |
-
class FlashT5Model(FlashT5PreTrainedModel):
|
517 |
-
|
518 |
-
def __init__(self, config: FlashT5Config):
|
519 |
-
super().__init__(config)
|
520 |
-
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
521 |
-
|
522 |
-
encoder_config = copy.deepcopy(config)
|
523 |
-
encoder_config.is_decoder = False
|
524 |
-
encoder_config.use_cache = False
|
525 |
-
encoder_config.is_encoder_decoder = False
|
526 |
-
self.encoder = FlashT5Stack(encoder_config, self.shared)
|
527 |
-
|
528 |
-
decoder_config = copy.deepcopy(config)
|
529 |
-
decoder_config.is_decoder = True
|
530 |
-
decoder_config.is_encoder_decoder = False
|
531 |
-
decoder_config.num_layers = config.num_decoder_layers
|
532 |
-
self.decoder = FlashT5Stack(decoder_config, self.shared)
|
533 |
-
|
534 |
-
# Initialize weights and apply final processing
|
535 |
-
self.post_init()
|
536 |
-
|
537 |
-
# Model parallel
|
538 |
-
self.model_parallel = False
|
539 |
-
self.device_map = None
|
540 |
-
|
541 |
-
def get_input_embeddings(self):
|
542 |
-
return self.shared
|
543 |
-
|
544 |
-
def set_input_embeddings(self, new_embeddings):
|
545 |
-
self.shared = new_embeddings
|
546 |
-
self.encoder.set_input_embeddings(new_embeddings)
|
547 |
-
self.decoder.set_input_embeddings(new_embeddings)
|
548 |
-
|
549 |
-
def get_encoder(self):
|
550 |
-
return self.encoder
|
551 |
-
|
552 |
-
def get_decoder(self):
|
553 |
-
return self.decoder
|
554 |
-
|
555 |
-
def forward(
|
556 |
-
self,
|
557 |
-
input_ids: Optional[torch.LongTensor] = None,
|
558 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
559 |
-
decoder_input_ids: Optional[torch.LongTensor] = None,
|
560 |
-
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
561 |
-
head_mask: Optional[torch.FloatTensor] = None,
|
562 |
-
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
563 |
-
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
564 |
-
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
565 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
566 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
567 |
-
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
568 |
-
use_cache: Optional[bool] = None,
|
569 |
-
output_attentions: Optional[bool] = None,
|
570 |
-
output_hidden_states: Optional[bool] = None,
|
571 |
-
return_dict: Optional[bool] = None,
|
572 |
-
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
573 |
-
|
574 |
-
# Encode if needed (training, first prediction pass)
|
575 |
-
if encoder_outputs is None:
|
576 |
-
encoder_outputs = self.encoder(
|
577 |
-
input_ids=input_ids,
|
578 |
-
attention_mask=attention_mask,
|
579 |
-
inputs_embeds=inputs_embeds
|
580 |
-
)
|
581 |
-
|
582 |
-
hidden_states = encoder_outputs[0]
|
583 |
-
|
584 |
-
# Decode
|
585 |
-
decoder_outputs = self.decoder(
|
586 |
-
input_ids=decoder_input_ids,
|
587 |
-
attention_mask=decoder_attention_mask,
|
588 |
-
inputs_embeds=decoder_inputs_embeds,
|
589 |
-
encoder_hidden_states=hidden_states,
|
590 |
-
encoder_attention_mask=attention_mask
|
591 |
-
)
|
592 |
-
|
593 |
-
return Seq2SeqModelOutput(
|
594 |
-
last_hidden_state=decoder_outputs.last_hidden_state,
|
595 |
-
decoder_hidden_states=decoder_outputs.hidden_states,
|
596 |
-
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
597 |
-
encoder_hidden_states=encoder_outputs.hidden_states,
|
598 |
-
)
|
599 |
-
|
600 |
-
class FlashT5ForConditionalGeneration(FlashT5PreTrainedModel):
|
601 |
-
|
602 |
-
def __init__(self, config: FlashT5Config):
|
603 |
-
super().__init__(config)
|
604 |
-
config.is_encoder_decoder = False
|
605 |
-
assert not config.tie_word_embeddings
|
606 |
-
|
607 |
-
self.config = config
|
608 |
-
self.model_dim = config.d_model
|
609 |
-
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
610 |
-
|
611 |
-
encoder_config = copy.deepcopy(config)
|
612 |
-
encoder_config.is_decoder = False
|
613 |
-
self.encoder = FlashT5Stack(encoder_config, self.shared)
|
614 |
-
|
615 |
-
decoder_config = copy.deepcopy(config)
|
616 |
-
decoder_config.is_decoder = True
|
617 |
-
decoder_config.num_layers = config.num_decoder_layers
|
618 |
-
self.decoder = FlashT5Stack(decoder_config, self.shared)
|
619 |
-
|
620 |
-
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
621 |
-
|
622 |
-
self.loss_fct = FlashT5CrossEntropyLoss(z_loss_factor=config.z_loss,
|
623 |
-
label_smoothing=config.label_smoothing,
|
624 |
-
use_triton_crossentropy=config.use_triton_crossentropy)
|
625 |
-
|
626 |
-
# Initialize weights and apply final processing
|
627 |
-
self.post_init()
|
628 |
-
|
629 |
-
def prepare_inputs_for_generation(
|
630 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
631 |
-
):
|
632 |
-
# do nothing
|
633 |
-
model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
|
634 |
-
|
635 |
-
return model_inputs
|
636 |
-
|
637 |
-
def get_input_embeddings(self):
|
638 |
-
return self.shared
|
639 |
-
|
640 |
-
def set_input_embeddings(self, value):
|
641 |
-
self.shared = value
|
642 |
-
|
643 |
-
def generate(
|
644 |
-
self,
|
645 |
-
input_ids: Optional[torch.LongTensor] = None,
|
646 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
647 |
-
max_length = 32,
|
648 |
-
**kwargs,
|
649 |
-
) -> torch.LongTensor:
|
650 |
-
"""
|
651 |
-
input_ids: B x L_encoder, int64
|
652 |
-
attention_mask: B x L_encoder, int64
|
653 |
-
1 for tokens to attend to, 0 for tokens to ignore
|
654 |
-
|
655 |
-
Generation:
|
656 |
-
Starts with 0, ends with 1, padding is 0
|
657 |
-
|
658 |
-
# For 20 input/outputs, the diff between my implementation and HF is 9.8s vs 11.4s
|
659 |
-
"""
|
660 |
-
B, _ = input_ids.size()
|
661 |
-
labels = torch.zeros(B, 1, dtype=torch.long, device=input_ids.device)
|
662 |
-
encoder_outputs = None
|
663 |
-
|
664 |
-
for _ in range(max_length):
|
665 |
-
out = self.forward(
|
666 |
-
input_ids=input_ids,
|
667 |
-
attention_mask=attention_mask,
|
668 |
-
decoder_input_ids=labels,
|
669 |
-
encoder_outputs=encoder_outputs,
|
670 |
-
)
|
671 |
-
encoder_outputs = out.encoder_outputs
|
672 |
-
top_labels = out.logits[:, -1].argmax(-1).unsqueeze(-1)
|
673 |
-
labels = torch.cat([labels, top_labels], dim=-1)
|
674 |
-
|
675 |
-
if (labels == 1).sum(-1).clamp(min=0, max=1).sum().item() == B:
|
676 |
-
break
|
677 |
-
|
678 |
-
labels[:, -1] = 1
|
679 |
-
|
680 |
-
# Mask out the padding, i.e., all positions after the first 1 with 0
|
681 |
-
B, L = labels.size()
|
682 |
-
mask = torch.arange(L, device=labels.device).unsqueeze(0) <= (labels == 1).long().argmax(-1).unsqueeze(-1)
|
683 |
-
labels = labels.masked_fill(~mask, 0)
|
684 |
-
|
685 |
-
return labels
|
686 |
-
|
687 |
-
def forward(
|
688 |
-
self,
|
689 |
-
input_ids: Optional[torch.LongTensor] = None,
|
690 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
691 |
-
decoder_input_ids: Optional[torch.LongTensor] = None,
|
692 |
-
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
693 |
-
labels: Optional[torch.LongTensor] = None,
|
694 |
-
encoder_outputs = None,
|
695 |
-
) -> Seq2SeqLMOutput:
|
696 |
-
"""
|
697 |
-
input_ids: B x L_encoder, int64
|
698 |
-
attention_mask: B x L_encoder, int64
|
699 |
-
1 for tokens to attend to, 0 for tokens to ignore
|
700 |
-
labels: B x L_decoder, int64
|
701 |
-
"""
|
702 |
-
if encoder_outputs is None:
|
703 |
-
encoder_outputs = self.encoder(
|
704 |
-
input_ids=input_ids,
|
705 |
-
attention_mask=attention_mask,
|
706 |
-
)
|
707 |
-
|
708 |
-
hidden_states = encoder_outputs.hidden_states
|
709 |
-
|
710 |
-
if labels is not None and decoder_input_ids is None:
|
711 |
-
decoder_input_ids = self._shift_right(labels)
|
712 |
-
|
713 |
-
decoder_outputs = self.decoder(
|
714 |
-
input_ids=decoder_input_ids,
|
715 |
-
attention_mask=decoder_attention_mask,
|
716 |
-
encoder_hidden_states=hidden_states,
|
717 |
-
encoder_attention_mask=attention_mask,
|
718 |
-
)
|
719 |
-
|
720 |
-
sequence_output = decoder_outputs[0]
|
721 |
-
lm_logits = self.lm_head(sequence_output)
|
722 |
-
|
723 |
-
loss = None
|
724 |
-
if labels is not None:
|
725 |
-
loss, z_loss = self.loss_fct(lm_logits, labels)
|
726 |
-
loss += z_loss
|
727 |
-
|
728 |
-
return Seq2SeqLMOutput(
|
729 |
-
loss=loss,
|
730 |
-
logits=lm_logits,
|
731 |
-
encoder_outputs=encoder_outputs,
|
732 |
-
)
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
class FlashT5EncoderModel(FlashT5PreTrainedModel):
|
737 |
-
_tied_weights_keys = ["encoder.embed_tokens.weight"]
|
738 |
-
|
739 |
-
def __init__(self, config: FlashT5Config):
|
740 |
-
super().__init__(config)
|
741 |
-
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
742 |
-
|
743 |
-
encoder_config = copy.deepcopy(config)
|
744 |
-
encoder_config.use_cache = False
|
745 |
-
encoder_config.is_encoder_decoder = False
|
746 |
-
self.encoder = FlashT5Stack(encoder_config, self.shared)
|
747 |
-
|
748 |
-
# Initialize weights and apply final processing
|
749 |
-
self.post_init()
|
750 |
-
|
751 |
-
# Model parallel
|
752 |
-
self.model_parallel = False
|
753 |
-
self.device_map = None
|
754 |
-
|
755 |
-
|
756 |
-
def parallelize(self, device_map=None):
|
757 |
-
warnings.warn(
|
758 |
-
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
759 |
-
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
760 |
-
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
|
761 |
-
" 'block.1': 1, ...}",
|
762 |
-
FutureWarning,
|
763 |
-
)
|
764 |
-
self.device_map = (
|
765 |
-
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
766 |
-
if device_map is None
|
767 |
-
else device_map
|
768 |
-
)
|
769 |
-
assert_device_map(self.device_map, len(self.encoder.block))
|
770 |
-
self.encoder.parallelize(self.device_map)
|
771 |
-
self.model_parallel = True
|
772 |
-
|
773 |
-
def deparallelize(self):
|
774 |
-
warnings.warn(
|
775 |
-
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
776 |
-
FutureWarning,
|
777 |
-
)
|
778 |
-
self.encoder.deparallelize()
|
779 |
-
self.encoder = self.encoder.to("cpu")
|
780 |
-
self.model_parallel = False
|
781 |
-
self.device_map = None
|
782 |
-
torch.cuda.empty_cache()
|
783 |
-
|
784 |
-
def get_input_embeddings(self):
|
785 |
-
return self.shared
|
786 |
-
|
787 |
-
def set_input_embeddings(self, new_embeddings):
|
788 |
-
self.shared = new_embeddings
|
789 |
-
self.encoder.set_input_embeddings(new_embeddings)
|
790 |
-
|
791 |
-
def get_encoder(self):
|
792 |
-
return self.encoder
|
793 |
-
|
794 |
-
def _prune_heads(self, heads_to_prune):
|
795 |
-
"""
|
796 |
-
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
797 |
-
class PreTrainedModel
|
798 |
-
"""
|
799 |
-
for layer, heads in heads_to_prune.items():
|
800 |
-
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
|
801 |
-
|
802 |
-
def forward(
|
803 |
-
self,
|
804 |
-
input_ids: Optional[torch.LongTensor] = None,
|
805 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
806 |
-
head_mask: Optional[torch.FloatTensor] = None,
|
807 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
808 |
-
output_attentions: Optional[bool] = None,
|
809 |
-
output_hidden_states: Optional[bool] = None,
|
810 |
-
return_dict: Optional[bool] = None,
|
811 |
-
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
812 |
-
r"""
|
813 |
-
Returns:
|
814 |
-
|
815 |
-
Example:
|
816 |
-
|
817 |
-
```python
|
818 |
-
>>> from transformers import AutoTokenizer, T5EncoderModel
|
819 |
-
|
820 |
-
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
821 |
-
>>> model = T5EncoderModel.from_pretrained("t5-small")
|
822 |
-
>>> input_ids = tokenizer(
|
823 |
-
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
824 |
-
... ).input_ids # Batch size 1
|
825 |
-
>>> outputs = model(input_ids=input_ids)
|
826 |
-
>>> last_hidden_states = outputs.last_hidden_state
|
827 |
-
```"""
|
828 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
829 |
-
|
830 |
-
encoder_outputs = self.encoder(
|
831 |
-
input_ids=input_ids,
|
832 |
-
attention_mask=attention_mask,
|
833 |
-
inputs_embeds=inputs_embeds,
|
834 |
-
head_mask=head_mask,
|
835 |
-
output_attentions=output_attentions,
|
836 |
-
output_hidden_states=output_hidden_states,
|
837 |
-
return_dict=return_dict,
|
838 |
-
)
|
839 |
-
|
840 |
-
return encoder_outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|