Commit
·
178e069
1
Parent(s):
04bbe41
Update README.md
Browse files
README.md
CHANGED
@@ -1,45 +1,125 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model: camembert-base
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
9 |
- f1
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
-
- name:
|
13 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
#
|
20 |
|
21 |
-
|
22 |
-
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.0876
|
24 |
-
- Precision: 0.9292
|
25 |
-
- Recall: 0.9534
|
26 |
-
- F1: 0.9411
|
27 |
-
- Accuracy: 0.9858
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
More information needed
|
32 |
|
33 |
-
## Intended uses & limitations
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
@@ -66,3 +146,102 @@ The following hyperparameters were used during training:
|
|
66 |
- Pytorch 2.1.1
|
67 |
- Datasets 2.14.7
|
68 |
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model: camembert-base
|
|
|
|
|
4 |
metrics:
|
5 |
- precision
|
6 |
- recall
|
7 |
- f1
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
+
- name: Camembert-NER-base-frenchNER
|
11 |
results: []
|
12 |
+
datasets:
|
13 |
+
- CATIE-AQ/frenchNER
|
14 |
+
language:
|
15 |
+
- fr
|
16 |
+
widget:
|
17 |
+
- text: "Boulanger, habitant à Boulanger et travaillant dans le magasin Boulanger situé dans la ville de Boulanger. Boulanger a écrit le livre éponyme Boulanger édité par la maison d'édition Boulanger."
|
18 |
+
library_name: transformers
|
19 |
+
pipeline_tag: token-classification
|
20 |
+
co2_eq_emissions: 35
|
21 |
---
|
22 |
|
|
|
|
|
23 |
|
24 |
+
# Camembert-NER-base-frenchNER
|
25 |
|
26 |
+
## Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
We present **Camembert-NER-base-frenchNER**, which is a [CamemBERT base](https://huggingface.co/camembert-base) fine-tuned for the Name Entity Recognition task for the French language on five French NER datasets for 3 entities (LOC, PER, ORG).
|
29 |
+
All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER](https://huggingface.co/datasets/CATIE-AQ/frenchNER).
|
30 |
+
This represents a total of over **420,264 rows, of which 346,071 are for training, 32,951 for validation and 41,242 for testing.**.
|
31 |
+
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
|
32 |
|
|
|
33 |
|
|
|
34 |
|
35 |
+
## Dataset
|
36 |
|
37 |
+
The dataset used is [frenchNER](https://huggingface.co/datasets/CATIE-AQ/frenchNER), which represents ~420k sentences labeled in 4 categories :
|
38 |
+
* PER: personality ;
|
39 |
+
* LOC: location ;
|
40 |
+
* ORG: organization ;
|
41 |
+
* O: background (Outside entity).
|
42 |
|
43 |
+
The distribution of the entities is as follows:
|
44 |
|
45 |
+
<table>
|
46 |
+
<thead>
|
47 |
+
<tr>
|
48 |
+
<th><br>Splits</th>
|
49 |
+
<th><br>O</th>
|
50 |
+
<th><br>PER</th>
|
51 |
+
<th><br>LOC</th>
|
52 |
+
<th><br>ORG</th>
|
53 |
+
</tr>
|
54 |
+
</thead>
|
55 |
+
<tbody>
|
56 |
+
<td><br>train</td>
|
57 |
+
<td><br><b>8,398,765</b></td>
|
58 |
+
<td><br><b>327,393</b></td>
|
59 |
+
<td><br><b>303,722</b></td>
|
60 |
+
<td><br><b>151,490</b></td>
|
61 |
+
</tr>
|
62 |
+
<tr>
|
63 |
+
<td><br>validation</td>
|
64 |
+
<td><br><b>592,815</b></td>
|
65 |
+
<td><br><b>34,127</b></td>
|
66 |
+
<td><br><b>30,279</b></td>
|
67 |
+
<td><br><b>18,743</b></td>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td><br>test</td>
|
71 |
+
<td><br><b>773,871</b></td>
|
72 |
+
<td><br><b>43,634</b></td>
|
73 |
+
<td><br><b>39,195</b></td>
|
74 |
+
<td><br><b>21,391</b></td>
|
75 |
+
</tr>
|
76 |
+
</tbody>
|
77 |
+
</table>
|
78 |
+
|
79 |
+
|
80 |
+
## Evaluation results
|
81 |
+
|
82 |
+
The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package.
|
83 |
+
|
84 |
+
### multiconer
|
85 |
+
TODO
|
86 |
+
|
87 |
+
### multinerd
|
88 |
+
TODO
|
89 |
+
|
90 |
+
### wikiann
|
91 |
+
TODO
|
92 |
+
|
93 |
+
### wikiner
|
94 |
+
TODO
|
95 |
+
|
96 |
+
### frenchNER
|
97 |
+
TODO
|
98 |
+
|
99 |
+
## Usage
|
100 |
+
### Code
|
101 |
+
|
102 |
+
```python
|
103 |
+
from transformers import pipeline
|
104 |
|
105 |
+
ner = pipeline('question-answering', model='CATIE-AQ/Camembert-NER-base-frenchNER', tokenizer='CATIE-AQ/Camembert-NER-base-frenchNER', grouped_entities=True)
|
106 |
+
|
107 |
+
result = ner(
|
108 |
+
"Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan.")
|
109 |
+
)
|
110 |
+
|
111 |
+
print(result)
|
112 |
+
```
|
113 |
+
```python
|
114 |
+
TODO
|
115 |
+
```
|
116 |
+
|
117 |
+
### Try it through Space
|
118 |
+
A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/Camembert-NER).
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
## Training procedure
|
123 |
### Training hyperparameters
|
124 |
|
125 |
The following hyperparameters were used during training:
|
|
|
146 |
- Pytorch 2.1.1
|
147 |
- Datasets 2.14.7
|
148 |
- Tokenizers 0.15.0
|
149 |
+
|
150 |
+
|
151 |
+
## Environmental Impact
|
152 |
+
|
153 |
+
*Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.*
|
154 |
+
|
155 |
+
- **Hardware Type:** A100 PCIe 40/80GB
|
156 |
+
- **Hours used:** 1h45min
|
157 |
+
- **Cloud Provider:** Private Infrastructure
|
158 |
+
- **Carbon Efficiency (kg/kWh):** 0.079 (estimated from [electricitymaps](https://app.electricitymaps.com/zone/FR) for the day of December 15, 2023.)
|
159 |
+
- **Carbon Emitted** *(Power consumption x Time x Carbon produced based on location of power grid)*: 0.035 kg eq. CO2
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
## Citations
|
164 |
+
|
165 |
+
### Camembert-NER-frenchNER
|
166 |
+
```
|
167 |
+
TODO
|
168 |
+
```
|
169 |
+
|
170 |
+
### multiconer
|
171 |
+
|
172 |
+
> @inproceedings{multiconer2-report,
|
173 |
+
title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},
|
174 |
+
author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},
|
175 |
+
booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},
|
176 |
+
year={2023},
|
177 |
+
publisher={Association for Computational Linguistics}}
|
178 |
+
|
179 |
+
> @article{multiconer2-data,
|
180 |
+
title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},
|
181 |
+
author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},
|
182 |
+
year={2023}}
|
183 |
+
|
184 |
+
|
185 |
+
### multinerd
|
186 |
+
|
187 |
+
> @inproceedings{tedeschi-navigli-2022-multinerd,
|
188 |
+
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
|
189 |
+
author = "Tedeschi, Simone and Navigli, Roberto",
|
190 |
+
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
|
191 |
+
month = jul,
|
192 |
+
year = "2022",
|
193 |
+
address = "Seattle, United States",
|
194 |
+
publisher = "Association for Computational Linguistics",
|
195 |
+
url = "https://aclanthology.org/2022.findings-naacl.60",
|
196 |
+
doi = "10.18653/v1/2022.findings-naacl.60",
|
197 |
+
pages = "801--812"}
|
198 |
+
|
199 |
+
|
200 |
+
### pii-masking-200k
|
201 |
+
```
|
202 |
+
TODO
|
203 |
+
```
|
204 |
+
|
205 |
+
### wikiann
|
206 |
+
|
207 |
+
> @inproceedings{rahimi-etal-2019-massively,
|
208 |
+
title = "Massively Multilingual Transfer for {NER}",
|
209 |
+
author = "Rahimi, Afshin and Li, Yuan and Cohn, Trevor",
|
210 |
+
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
|
211 |
+
month = jul,
|
212 |
+
year = "2019",
|
213 |
+
address = "Florence, Italy",
|
214 |
+
publisher = "Association for Computational Linguistics",
|
215 |
+
url = "https://www.aclweb.org/anthology/P19-1015",
|
216 |
+
pages = "151--164"}
|
217 |
+
|
218 |
+
### wikiner
|
219 |
+
|
220 |
+
> @article{NOTHMAN2013151,
|
221 |
+
title = {Learning multilingual named entity recognition from Wikipedia},
|
222 |
+
journal = {Artificial Intelligence},
|
223 |
+
volume = {194},
|
224 |
+
pages = {151-175},
|
225 |
+
year = {2013},
|
226 |
+
note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},
|
227 |
+
issn = {0004-3702},
|
228 |
+
doi = {https://doi.org/10.1016/j.artint.2012.03.006},
|
229 |
+
url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},
|
230 |
+
author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}
|
231 |
+
|
232 |
+
|
233 |
+
### frenchNER
|
234 |
+
```
|
235 |
+
TODO
|
236 |
+
```
|
237 |
+
|
238 |
+
### CamemBERT
|
239 |
+
> @inproceedings{martin2020camembert,
|
240 |
+
title={CamemBERT: a Tasty French Language Model},
|
241 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
242 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
243 |
+
year={2020}}
|
244 |
+
|
245 |
+
|
246 |
+
## License
|
247 |
+
[cc-by-4.0](https://creativecommons.org/licenses/by/4.0/deed.en)
|