bourdoiscatie
commited on
Commit
·
2df0e90
1
Parent(s):
c221b83
Update README.md
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ co2_eq_emissions: 35
|
|
27 |
|
28 |
We present **Camembert-NER-base-frenchNER**, which is a [CamemBERT base](https://huggingface.co/camembert-base) fine-tuned for the Name Entity Recognition task for the French language on five French NER datasets for 3 entities (LOC, PER, ORG).
|
29 |
All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER](https://huggingface.co/datasets/CATIE-AQ/frenchNER).
|
30 |
-
This represents a total of over **420,264 rows, of which 346,071 are for training, 32,951 for validation and 41,242 for testing
|
31 |
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
|
32 |
|
33 |
|
@@ -82,19 +82,266 @@ The distribution of the entities is as follows:
|
|
82 |
The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package.
|
83 |
|
84 |
### multiconer
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
### multinerd
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
### wikiann
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
### wikiner
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
### frenchNER
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
## Usage
|
100 |
### Code
|
|
|
27 |
|
28 |
We present **Camembert-NER-base-frenchNER**, which is a [CamemBERT base](https://huggingface.co/camembert-base) fine-tuned for the Name Entity Recognition task for the French language on five French NER datasets for 3 entities (LOC, PER, ORG).
|
29 |
All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER](https://huggingface.co/datasets/CATIE-AQ/frenchNER).
|
30 |
+
This represents a total of over **420,264 rows, of which 346,071 are for training, 32,951 for validation and 41,242 for testing.**
|
31 |
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
|
32 |
|
33 |
|
|
|
82 |
The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package.
|
83 |
|
84 |
### multiconer
|
85 |
+
|
86 |
+
<table>
|
87 |
+
<thead>
|
88 |
+
<tr>
|
89 |
+
<th><br>Model</th>
|
90 |
+
<th><br>Metrics</th>
|
91 |
+
<th><br>PER</th>
|
92 |
+
<th><br>LOC</th>
|
93 |
+
<th><br>ORG</th>
|
94 |
+
<th><br>Other</th>
|
95 |
+
<th><br>Overall</th>
|
96 |
+
</tr>
|
97 |
+
</thead>
|
98 |
+
<tbody>
|
99 |
+
<tr>
|
100 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_3entities</td>
|
101 |
+
<td><br>Precision</td>
|
102 |
+
<td><br>0,957</td>
|
103 |
+
<td><br>0,894</td>
|
104 |
+
<td><br>0,876</td>
|
105 |
+
<td><br>0,986</td>
|
106 |
+
<td><br>0,972</td>
|
107 |
+
</tr>
|
108 |
+
<tr>
|
109 |
+
<td><br>Recall</td>
|
110 |
+
<td><br>0,962</td>
|
111 |
+
<td><br>0,880</td>
|
112 |
+
<td><br>0,878</td>
|
113 |
+
<td><br>0,985</td>
|
114 |
+
<td><br>0,972</td>
|
115 |
+
</tr>
|
116 |
+
<tr>
|
117 |
+
<td>F1</td>
|
118 |
+
<td><br>0,960</td>
|
119 |
+
<td><br>0,887</td>
|
120 |
+
<td><br>0,876</td>
|
121 |
+
<td><br>0,985</td>
|
122 |
+
<td><br>0,972</td>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<td></td>
|
126 |
+
<td><br>Number</td>
|
127 |
+
<td><br>2,526</td>
|
128 |
+
<td><br>884</td>
|
129 |
+
<td><br>830</td>
|
130 |
+
<td><br>13,710</td>
|
131 |
+
<td><br>17,950</td>
|
132 |
+
</tr>
|
133 |
+
</tbody>
|
134 |
+
</table>
|
135 |
|
136 |
### multinerd
|
137 |
+
|
138 |
+
<table>
|
139 |
+
<thead>
|
140 |
+
<tr>
|
141 |
+
<th><br>Model</th>
|
142 |
+
<th><br>Metrics</th>
|
143 |
+
<th><br>PER</th>
|
144 |
+
<th><br>LOC</th>
|
145 |
+
<th><br>ORG</th>
|
146 |
+
<th><br>Other</th>
|
147 |
+
<th><br>Overall</th>
|
148 |
+
</tr>
|
149 |
+
</thead>
|
150 |
+
<tbody>
|
151 |
+
<tr>
|
152 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_3entities</td>
|
153 |
+
<td><br>Precision</td>
|
154 |
+
<td><br>0,974</td>
|
155 |
+
<td><br>0,965</td>
|
156 |
+
<td><br>0,910</td>
|
157 |
+
<td><br>0,999</td>
|
158 |
+
<td><br>0,995</td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td><br>Recall</td>
|
162 |
+
<td><br>0,995</td>
|
163 |
+
<td><br>0,981</td>
|
164 |
+
<td><br>0,968</td>
|
165 |
+
<td><br>0,996</td>
|
166 |
+
<td><br>0,995</td>
|
167 |
+
</tr>
|
168 |
+
<tr>
|
169 |
+
<td>F1</td>
|
170 |
+
<td><br>0,985</td>
|
171 |
+
<td><br>0,973</td>
|
172 |
+
<td><br>0,938</td>
|
173 |
+
<td><br>0,998</td>
|
174 |
+
<td><br>0,995</td>
|
175 |
+
</tr>
|
176 |
+
<tr>
|
177 |
+
<td></td>
|
178 |
+
<td><br>Number</td>
|
179 |
+
<td><br>36,365</td>
|
180 |
+
<td><br>27,101</td>
|
181 |
+
<td><br>5,411</td>
|
182 |
+
<td><br>529,523</td>
|
183 |
+
<td><br>598,400</td>
|
184 |
+
</tr>
|
185 |
+
</tbody>
|
186 |
+
</table>
|
187 |
|
188 |
### wikiann
|
189 |
+
|
190 |
+
<table>
|
191 |
+
<thead>
|
192 |
+
<tr>
|
193 |
+
<th><br>Model</th>
|
194 |
+
<th><br>Metrics</th>
|
195 |
+
<th><br>PER</th>
|
196 |
+
<th><br>LOC</th>
|
197 |
+
<th><br>ORG</th>
|
198 |
+
<th><br>Other</th>
|
199 |
+
<th><br>Overall</th>
|
200 |
+
</tr>
|
201 |
+
</thead>
|
202 |
+
<tbody>
|
203 |
+
<tr>
|
204 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_3entities</td>
|
205 |
+
<td><br>Precision</td>
|
206 |
+
<td><br>0,948</td>
|
207 |
+
<td><br>0,900</td>
|
208 |
+
<td><br>0,893</td>
|
209 |
+
<td><br>0,979</td>
|
210 |
+
<td><br>0,942</td>
|
211 |
+
</tr>
|
212 |
+
<tr>
|
213 |
+
<td><br>Recall</td>
|
214 |
+
<td><br>0,946</td>
|
215 |
+
<td><br>0,911</td>
|
216 |
+
<td><br>0,878</td>
|
217 |
+
<td><br>0,982</td>
|
218 |
+
<td><br>0,942</td>
|
219 |
+
</tr>
|
220 |
+
<tr>
|
221 |
+
<td>F1</td>
|
222 |
+
<td><br>0,947</td>
|
223 |
+
<td><br>0,906</td>
|
224 |
+
<td><br>0,886</td>
|
225 |
+
<td><br>0,980</td>
|
226 |
+
<td><br>0,942</td>
|
227 |
+
</tr>
|
228 |
+
<tr>
|
229 |
+
<td></td>
|
230 |
+
<td><br>Number</td>
|
231 |
+
<td><br>21,656</td>
|
232 |
+
<td><br>19,757</td>
|
233 |
+
<td><br>21,592</td>
|
234 |
+
<td><br>47,318</td>
|
235 |
+
<td><br>110,323</td>
|
236 |
+
</tr>
|
237 |
+
</tbody>
|
238 |
+
</table>
|
239 |
|
240 |
### wikiner
|
241 |
+
|
242 |
+
<table>
|
243 |
+
<thead>
|
244 |
+
<tr>
|
245 |
+
<th><br>Model</th>
|
246 |
+
<th><br>Metrics</th>
|
247 |
+
<th><br>PER</th>
|
248 |
+
<th><br>LOC</th>
|
249 |
+
<th><br>ORG</th>
|
250 |
+
<th><br>Other</th>
|
251 |
+
<th><br>Overall</th>
|
252 |
+
</tr>
|
253 |
+
</thead>
|
254 |
+
<tbody>
|
255 |
+
<tr>
|
256 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_3entities</td>
|
257 |
+
<td><br>Precision</td>
|
258 |
+
<td><br>0,971</td>
|
259 |
+
<td><br>0,947</td>
|
260 |
+
<td><br>0,866</td>
|
261 |
+
<td><br>0,994</td>
|
262 |
+
<td><br>0,989</td>
|
263 |
+
</tr>
|
264 |
+
<tr>
|
265 |
+
<td><br>Recall</td>
|
266 |
+
<td><br>0,969</td>
|
267 |
+
<td><br>0,942</td>
|
268 |
+
<td><br>0,891</td>
|
269 |
+
<td><br>0,995</td>
|
270 |
+
<td><br>0,989</td>
|
271 |
+
</tr>
|
272 |
+
<tr>
|
273 |
+
<td>F1</td>
|
274 |
+
<td><br>0,969</td>
|
275 |
+
<td><br>0,945</td>
|
276 |
+
<td><br>0,878</td>
|
277 |
+
<td><br>0,995</td>
|
278 |
+
<td><br>0,989</td>
|
279 |
+
</tr>
|
280 |
+
<tr>
|
281 |
+
<td></td>
|
282 |
+
<td><br>Number</td>
|
283 |
+
<td><br>26,053</td>
|
284 |
+
<td><br>29,004</td>
|
285 |
+
<td><br>6,253</td>
|
286 |
+
<td><br>394,986</td>
|
287 |
+
<td><br>456,296</td>
|
288 |
+
</tr>
|
289 |
+
</tbody>
|
290 |
+
</table>
|
291 |
|
292 |
### frenchNER
|
293 |
+
|
294 |
+
<table>
|
295 |
+
<thead>
|
296 |
+
<tr>
|
297 |
+
<th><br>Model</th>
|
298 |
+
<th><br>Metrics</th>
|
299 |
+
<th><br>PER</th>
|
300 |
+
<th><br>LOC</th>
|
301 |
+
<th><br>ORG</th>
|
302 |
+
<th><br>Other</th>
|
303 |
+
<th><br>Overall</th>
|
304 |
+
</tr>
|
305 |
+
</thead>
|
306 |
+
<tbody>
|
307 |
+
<tr>
|
308 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_3entities</td>
|
309 |
+
<td><br>Precision</td>
|
310 |
+
<td><br>0,961</td>
|
311 |
+
<td><br>0,935</td>
|
312 |
+
<td><br>0,877</td>
|
313 |
+
<td><br>0,995</td>
|
314 |
+
<td><br>0,986</td>
|
315 |
+
</tr>
|
316 |
+
<tr>
|
317 |
+
<td><br>Recall</td>
|
318 |
+
<td><br>0,972</td>
|
319 |
+
<td><br>0,946</td>
|
320 |
+
<td><br>0,876</td>
|
321 |
+
<td><br>0,994</td>
|
322 |
+
<td><br>0,986</td>
|
323 |
+
</tr>
|
324 |
+
<tr>
|
325 |
+
<td>F1</td>
|
326 |
+
<td><br>0,966</td>
|
327 |
+
<td><br>0,940</td>
|
328 |
+
<td><br>0,876</td>
|
329 |
+
<td><br>0,994</td>
|
330 |
+
<td><br>0,986</td>
|
331 |
+
</tr>
|
332 |
+
<tr>
|
333 |
+
<td></td>
|
334 |
+
<td><br>Number</td>
|
335 |
+
<td><br>88,139</td>
|
336 |
+
<td><br>78,278</td>
|
337 |
+
<td><br>35,788</td>
|
338 |
+
<td><br>1,040,925</td>
|
339 |
+
<td><br>1,243,130</td>
|
340 |
+
</tr>
|
341 |
+
</tbody>
|
342 |
+
</table>
|
343 |
+
|
344 |
+
|
345 |
|
346 |
## Usage
|
347 |
### Code
|