bourdoiscatie
commited on
Commit
·
7fa7b52
1
Parent(s):
f0e5903
Update README.md
Browse files
README.md
CHANGED
@@ -1,42 +1,345 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model: camembert-base
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
9 |
- f1
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
-
- name:
|
13 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
#
|
20 |
|
21 |
-
|
22 |
-
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.0542
|
24 |
-
- Precision: 0.9844
|
25 |
-
- Recall: 0.9844
|
26 |
-
- F1: 0.9844
|
27 |
-
- Accuracy: 0.9844
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
More information needed
|
32 |
|
33 |
-
## Intended uses & limitations
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
More information needed
|
40 |
|
41 |
## Training procedure
|
42 |
|
@@ -66,3 +369,93 @@ The following hyperparameters were used during training:
|
|
66 |
- Pytorch 2.1.2
|
67 |
- Datasets 2.16.1
|
68 |
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model: camembert-base
|
|
|
|
|
4 |
metrics:
|
5 |
- precision
|
6 |
- recall
|
7 |
- f1
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
+
- name: Camembert-base-frenchNER_4entities
|
11 |
results: []
|
12 |
+
datasets:
|
13 |
+
- CATIE-AQ/frenchNER_4entities
|
14 |
+
language:
|
15 |
+
- fr
|
16 |
+
widget:
|
17 |
+
- text: "Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
|
18 |
+
library_name: transformers
|
19 |
+
pipeline_tag: token-classification
|
20 |
+
co2_eq_emissions: 35
|
21 |
---
|
22 |
|
|
|
|
|
23 |
|
24 |
+
# Camembert-base-frenchNER_3entities
|
25 |
|
26 |
+
## Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
We present **Camembert-base-frenchNER_4entities**, which is a [CamemBERT base](https://huggingface.co/camembert-base) fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
|
29 |
+
All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities).
|
30 |
+
There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing.
|
31 |
+
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
|
32 |
|
|
|
33 |
|
|
|
34 |
|
35 |
+
## Dataset
|
36 |
|
37 |
+
The dataset used is [frenchNER](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities), which represents ~385k sentences labeled in 4 categories :
|
38 |
+
* PER: personality ;
|
39 |
+
* LOC: location ;
|
40 |
+
* ORG: organization ;
|
41 |
+
* MISC: miscellaneous ;
|
42 |
+
* O: background (Outside entity).
|
43 |
+
|
44 |
+
The distribution of the entities is as follows:
|
45 |
+
|
46 |
+
<table>
|
47 |
+
<thead>
|
48 |
+
<tr>
|
49 |
+
<th><br>Splits</th>
|
50 |
+
<th><br>O</th>
|
51 |
+
<th><br>PER</th>
|
52 |
+
<th><br>LOC</th>
|
53 |
+
<th><br>ORG</th>
|
54 |
+
<th><br>MISC</th>
|
55 |
+
</tr>
|
56 |
+
</thead>
|
57 |
+
<tbody>
|
58 |
+
<td><br>train</td>
|
59 |
+
<td><br><b>A</b></td>
|
60 |
+
<td><br><b>B</b></td>
|
61 |
+
<td><br><b>C</b></td>
|
62 |
+
<td><br><b>D</b></td>
|
63 |
+
<td><br><b>E</b></td>
|
64 |
+
</tr>
|
65 |
+
<tr>
|
66 |
+
<td><br>validation</td>
|
67 |
+
<td><br><b>A</b></td>
|
68 |
+
<td><br><b>B</b></td>
|
69 |
+
<td><br><b>C</b></td>
|
70 |
+
<td><br><b>D</b></td>
|
71 |
+
<td><br><b>E</b></td>
|
72 |
+
</tr>
|
73 |
+
<tr>
|
74 |
+
<td><br>test</td>
|
75 |
+
<td><br><b>A</b></td>
|
76 |
+
<td><br><b>B</b></td>
|
77 |
+
<td><br><b>C</b></td>
|
78 |
+
<td><br><b>D</b></td>
|
79 |
+
<td><br><b>E</b></td>
|
80 |
+
</tr>
|
81 |
+
</tbody>
|
82 |
+
</table>
|
83 |
+
|
84 |
+
|
85 |
+
## Evaluation results
|
86 |
+
|
87 |
+
The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package.
|
88 |
+
|
89 |
+
### frenchNER_4entities
|
90 |
+
|
91 |
+
<table>
|
92 |
+
<thead>
|
93 |
+
<tr>
|
94 |
+
<th><br>Model</th>
|
95 |
+
<th><br>Metrics</th>
|
96 |
+
<th><br>PER</th>
|
97 |
+
<th><br>LOC</th>
|
98 |
+
<th><br>ORG</th>
|
99 |
+
<th><br>MISC</th>
|
100 |
+
<th><br>O</th>
|
101 |
+
<th><br>Overall</th>
|
102 |
+
</tr>
|
103 |
+
</thead>
|
104 |
+
<tbody>
|
105 |
+
<tr>
|
106 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
|
107 |
+
<td><br>Precision</td>
|
108 |
+
<td><br>A</td>
|
109 |
+
<td><br>B</td>
|
110 |
+
<td><br>C</td>
|
111 |
+
<td><br>D</td>
|
112 |
+
<td><br>E</td>
|
113 |
+
<td><br>F</td>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td><br>Recall</td>
|
117 |
+
<td><br>A</td>
|
118 |
+
<td><br>B</td>
|
119 |
+
<td><br>C</td>
|
120 |
+
<td><br>D</td>
|
121 |
+
<td><br>E</td>
|
122 |
+
<td><br>F</td>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<td>F1</td>
|
126 |
+
<td><br>A</td>
|
127 |
+
<td><br>B</td>
|
128 |
+
<td><br>C</td>
|
129 |
+
<td><br>D</td>
|
130 |
+
<td><br>E</td>
|
131 |
+
<td><br>F</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td></td>
|
135 |
+
<td><br>Number</td>
|
136 |
+
<td><br>A</td>
|
137 |
+
<td><br>B</td>
|
138 |
+
<td><br>C</td>
|
139 |
+
<td><br>D</td>
|
140 |
+
<td><br>E</td>
|
141 |
+
<td><br>F</td>
|
142 |
+
</tr>
|
143 |
+
</tbody>
|
144 |
+
</table>
|
145 |
+
|
146 |
+
|
147 |
+
In detail:
|
148 |
+
|
149 |
+
### multiconer
|
150 |
+
|
151 |
+
<table>
|
152 |
+
<thead>
|
153 |
+
<tr>
|
154 |
+
<th><br>Model</th>
|
155 |
+
<th><br>Metrics</th>
|
156 |
+
<th><br>PER</th>
|
157 |
+
<th><br>LOC</th>
|
158 |
+
<th><br>ORG</th>
|
159 |
+
<th><br>MISC</th>
|
160 |
+
<th><br>O</th>
|
161 |
+
<th><br>Overall</th>
|
162 |
+
</tr>
|
163 |
+
</thead>
|
164 |
+
<tbody>
|
165 |
+
<tr>
|
166 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
|
167 |
+
<td><br>Precision</td>
|
168 |
+
<td><br>A</td>
|
169 |
+
<td><br>B</td>
|
170 |
+
<td><br>C</td>
|
171 |
+
<td><br>D</td>
|
172 |
+
<td><br>E</td>
|
173 |
+
<td><br>F</td>
|
174 |
+
</tr>
|
175 |
+
<tr>
|
176 |
+
<td><br>Recall</td>
|
177 |
+
<td><br>A</td>
|
178 |
+
<td><br>B</td>
|
179 |
+
<td><br>C</td>
|
180 |
+
<td><br>D</td>
|
181 |
+
<td><br>E</td>
|
182 |
+
<td><br>F</td>
|
183 |
+
</tr>
|
184 |
+
<tr>
|
185 |
+
<td>F1</td>
|
186 |
+
<td><br>A</td>
|
187 |
+
<td><br>B</td>
|
188 |
+
<td><br>C</td>
|
189 |
+
<td><br>D</td>
|
190 |
+
<td><br>E</td>
|
191 |
+
<td><br>F</td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td></td>
|
195 |
+
<td><br>Number</td>
|
196 |
+
<td><br>A</td>
|
197 |
+
<td><br>B</td>
|
198 |
+
<td><br>C</td>
|
199 |
+
<td><br>D</td>
|
200 |
+
<td><br>E</td>
|
201 |
+
<td><br>F</td>
|
202 |
+
</tr>
|
203 |
+
</tbody>
|
204 |
+
</table>
|
205 |
+
|
206 |
+
### multinerd
|
207 |
+
|
208 |
+
<table>
|
209 |
+
<thead>
|
210 |
+
<tr>
|
211 |
+
<th><br>Model</th>
|
212 |
+
<th><br>Metrics</th>
|
213 |
+
<th><br>PER</th>
|
214 |
+
<th><br>LOC</th>
|
215 |
+
<th><br>ORG</th>
|
216 |
+
<th><br>MISC</th>
|
217 |
+
<th><br>O</th>
|
218 |
+
<th><br>Overall</th>
|
219 |
+
</tr>
|
220 |
+
</thead>
|
221 |
+
<tbody>
|
222 |
+
<tr>
|
223 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
|
224 |
+
<td><br>Precision</td>
|
225 |
+
<td><br>A</td>
|
226 |
+
<td><br>B</td>
|
227 |
+
<td><br>C</td>
|
228 |
+
<td><br>D</td>
|
229 |
+
<td><br>E</td>
|
230 |
+
<td><br>F</td>
|
231 |
+
</tr>
|
232 |
+
<tr>
|
233 |
+
<td><br>Recall</td>
|
234 |
+
<td><br>A</td>
|
235 |
+
<td><br>B</td>
|
236 |
+
<td><br>C</td>
|
237 |
+
<td><br>D</td>
|
238 |
+
<td><br>E</td>
|
239 |
+
<td><br>F</td>
|
240 |
+
</tr>
|
241 |
+
<tr>
|
242 |
+
<td>F1</td>
|
243 |
+
<td><br>A</td>
|
244 |
+
<td><br>B</td>
|
245 |
+
<td><br>C</td>
|
246 |
+
<td><br>D</td>
|
247 |
+
<td><br>E</td>
|
248 |
+
<td><br>F</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td></td>
|
252 |
+
<td><br>Number</td>
|
253 |
+
<td><br>A</td>
|
254 |
+
<td><br>B</td>
|
255 |
+
<td><br>C</td>
|
256 |
+
<td><br>D</td>
|
257 |
+
<td><br>E</td>
|
258 |
+
<td><br>F</td>
|
259 |
+
</tr>
|
260 |
+
</tbody>
|
261 |
+
</table>
|
262 |
+
|
263 |
+
|
264 |
+
### wikiner
|
265 |
+
|
266 |
+
<table>
|
267 |
+
<thead>
|
268 |
+
<tr>
|
269 |
+
<th><br>Model</th>
|
270 |
+
<th><br>Metrics</th>
|
271 |
+
<th><br>PER</th>
|
272 |
+
<th><br>LOC</th>
|
273 |
+
<th><br>ORG</th>
|
274 |
+
<th><br>MISC</th>
|
275 |
+
<th><br>O</th>
|
276 |
+
<th><br>Overall</th>
|
277 |
+
</tr>
|
278 |
+
</thead>
|
279 |
+
<tbody>
|
280 |
+
<tr>
|
281 |
+
<td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
|
282 |
+
<td><br>Precision</td>
|
283 |
+
<td><br>A</td>
|
284 |
+
<td><br>B</td>
|
285 |
+
<td><br>C</td>
|
286 |
+
<td><br>D</td>
|
287 |
+
<td><br>E</td>
|
288 |
+
<td><br>F</td>
|
289 |
+
</tr>
|
290 |
+
<tr>
|
291 |
+
<td><br>Recall</td>
|
292 |
+
<td><br>A</td>
|
293 |
+
<td><br>B</td>
|
294 |
+
<td><br>C</td>
|
295 |
+
<td><br>D</td>
|
296 |
+
<td><br>E</td>
|
297 |
+
<td><br>F</td>
|
298 |
+
</tr>
|
299 |
+
<tr>
|
300 |
+
<td>F1</td>
|
301 |
+
<td><br>A</td>
|
302 |
+
<td><br>B</td>
|
303 |
+
<td><br>C</td>
|
304 |
+
<td><br>D</td>
|
305 |
+
<td><br>E</td>
|
306 |
+
<td><br>F</td>
|
307 |
+
</tr>
|
308 |
+
<tr>
|
309 |
+
<td></td>
|
310 |
+
<td><br>Number</td>
|
311 |
+
<td><br>A</td>
|
312 |
+
<td><br>B</td>
|
313 |
+
<td><br>C</td>
|
314 |
+
<td><br>D</td>
|
315 |
+
<td><br>E</td>
|
316 |
+
<td><br>F</td>
|
317 |
+
</tr>
|
318 |
+
</tbody>
|
319 |
+
</table>
|
320 |
+
|
321 |
+
|
322 |
+
## Usage
|
323 |
+
### Code
|
324 |
+
|
325 |
+
```python
|
326 |
+
from transformers import pipeline
|
327 |
+
|
328 |
+
ner = pipeline('question-answering', model='CATIE-AQ/Camembert-base-frenchNER_4entities', tokenizer='CATIE-AQ/Camembert-base-frenchNER_4entities', grouped_entities=True)
|
329 |
+
|
330 |
+
result = ner(
|
331 |
+
"Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
|
332 |
+
)
|
333 |
+
|
334 |
+
print(result)
|
335 |
+
```
|
336 |
+
```python
|
337 |
+
|
338 |
+
```
|
339 |
+
|
340 |
+
### Try it through Space
|
341 |
+
A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/Camembert-NER).
|
342 |
|
|
|
343 |
|
344 |
## Training procedure
|
345 |
|
|
|
369 |
- Pytorch 2.1.2
|
370 |
- Datasets 2.16.1
|
371 |
- Tokenizers 0.15.0
|
372 |
+
|
373 |
+
|
374 |
+
## Environmental Impact
|
375 |
+
|
376 |
+
*Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.*
|
377 |
+
|
378 |
+
- **Hardware Type:** A100 PCIe 40/80GB
|
379 |
+
- **Hours used:** 1h45min
|
380 |
+
- **Cloud Provider:** Private Infrastructure
|
381 |
+
- **Carbon Efficiency (kg/kWh):** 0.046 (estimated from [electricitymaps](https://app.electricitymaps.com/zone/FR) for the day of January 4, 2024.)
|
382 |
+
- **Carbon Emitted** *(Power consumption x Time x Carbon produced based on location of power grid)*: 0.02 kg eq. CO2
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
## Citations
|
387 |
+
|
388 |
+
### Camembert-frenchNER_4entities
|
389 |
+
```
|
390 |
+
TODO
|
391 |
+
```
|
392 |
+
|
393 |
+
### multiconer
|
394 |
+
|
395 |
+
> @inproceedings{multiconer2-report,
|
396 |
+
title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},
|
397 |
+
author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},
|
398 |
+
booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},
|
399 |
+
year={2023},
|
400 |
+
publisher={Association for Computational Linguistics}}
|
401 |
+
|
402 |
+
> @article{multiconer2-data,
|
403 |
+
title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},
|
404 |
+
author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},
|
405 |
+
year={2023}}
|
406 |
+
|
407 |
+
|
408 |
+
### multinerd
|
409 |
+
|
410 |
+
> @inproceedings{tedeschi-navigli-2022-multinerd,
|
411 |
+
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
|
412 |
+
author = "Tedeschi, Simone and Navigli, Roberto",
|
413 |
+
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
|
414 |
+
month = jul,
|
415 |
+
year = "2022",
|
416 |
+
address = "Seattle, United States",
|
417 |
+
publisher = "Association for Computational Linguistics",
|
418 |
+
url = "https://aclanthology.org/2022.findings-naacl.60",
|
419 |
+
doi = "10.18653/v1/2022.findings-naacl.60",
|
420 |
+
pages = "801--812"}
|
421 |
+
|
422 |
+
### pii-masking-200k
|
423 |
+
|
424 |
+
> @misc {ai4privacy_2023,
|
425 |
+
author = { {ai4Privacy} },
|
426 |
+
title = { pii-masking-200k (Revision 1d4c0a1) },
|
427 |
+
year = 2023,
|
428 |
+
url = { https://huggingface.co/datasets/ai4privacy/pii-masking-200k },
|
429 |
+
doi = { 10.57967/hf/1532 },
|
430 |
+
publisher = { Hugging Face }}
|
431 |
+
|
432 |
+
### wikiner
|
433 |
+
|
434 |
+
> @article{NOTHMAN2013151,
|
435 |
+
title = {Learning multilingual named entity recognition from Wikipedia},
|
436 |
+
journal = {Artificial Intelligence},
|
437 |
+
volume = {194},
|
438 |
+
pages = {151-175},
|
439 |
+
year = {2013},
|
440 |
+
note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},
|
441 |
+
issn = {0004-3702},
|
442 |
+
doi = {https://doi.org/10.1016/j.artint.2012.03.006},
|
443 |
+
url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},
|
444 |
+
author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}
|
445 |
+
|
446 |
+
|
447 |
+
### frenchNER_4entities
|
448 |
+
```
|
449 |
+
TODO
|
450 |
+
```
|
451 |
+
|
452 |
+
### CamemBERT
|
453 |
+
> @inproceedings{martin2020camembert,
|
454 |
+
title={CamemBERT: a Tasty French Language Model},
|
455 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
456 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
457 |
+
year={2020}}
|
458 |
+
|
459 |
+
|
460 |
+
## License
|
461 |
+
[cc-by-4.0](https://creativecommons.org/licenses/by/4.0/deed.en)
|