CCB commited on
Commit
36fa061
1 Parent(s): a963998

Pushed by DataDreamer

Browse files
Files changed (1) hide show
  1. README.md +32 -191
README.md CHANGED
@@ -1,199 +1,40 @@
 
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
106
 
107
- ### Testing Data, Factors & Metrics
 
 
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+
2
  ---
3
+ base_model: google/t5-v1_1-base
4
+
5
+ tags:
6
+ - datadreamer
7
+ - datadreamer-0.28.0
8
+ - synthetic
9
+ - gpt-4
10
+ - gpt-4
11
+ - text2text-generation
12
+
13
+ widget:
14
+ - text: "In this paper, we present a novel method for Natural Language Processing (NLP) based on the introduction of deep learning techniques adapted to linguistics. We demonstrate that by integrating syntactic and semantic analysis in pre-processing stages, superior text understanding can be facilitated. Initial processes involve tokenization, POS-tagging, syntactic-semantic hinging for all corpus. To further the learning precision, we introduce a framework powered by a hybrid of Transformer and Recurrent Neural Networks architectures that manifest in increased efficiency both theoretically and empirically. This paper shares exhaustive results, detailing improvements in feature engineering, promising a reduction in human-size semantic labor. We additionally propose that integrating deep learning methods with traditional linguistics dramatically improves contextual understanding and performance on tasks such as language translation, sentiment analysis, and automated thesaurus generation. The innovations reported here make significant strides towards realizing viable, sophisticated machine-level NLP systems. Additionally, the research represents groundwork for further exploration and development promising higher degrees of culture-language contextuality and robustness integral in future NLP applications."
15
+ example_title: "Example 1"
16
+ - text: "This paper proposes a novel approach to improve performance in Natural Language Processing (NLP) tasks by harnessing the potential of deep learning algorithms using multilingual transformer models. Our work investigates the challenging problem of understanding and manipulating sentences to Toucan dialogue language in context-dependent situations. We present a comprehensive analysis of established NLP approaches, novel methods based on transformer models, and thorough experiments that demonstrate substantial advancements over the state-of-art performances. Our primary contribution lies in the intelligent integration of thematic role labeling with multilingual models to improve the comprehension of sentence structure; for instance, recognizing grammatical relations irrespective of a word\u2019s syntactic position or morphological form. In addition, our method progresses automatic predicate argument structure analysis, giving significance and having potential applications in tasks such as information extraction, summarization, and machine translation. We provide task-specific models that reveal the comparative strength of our architecture set over a cross-lingual task. Systematic evaluations conducted on several linguistic databases have demonstrated robust effectiveness in extracting and reconstructing meaningful entities from unstructured language data. The empirical results show notable enhancements in NLP task competence and thus stimulate further research avenues for substantial developments in multimodal natural language understanding and endow opportunities for practical applications."
17
+ example_title: "Example 2"
18
+ - text: "In recent years, natural language processing (NLP) has seen impressive advancements because of the advent of deep learning technologies, like transformer-based models such as BERT., However, there remain significant challenges in obtaining human-level understanding, notably concerning effectively extracting semantics from context, deeper discourse analysis and anticipatory prediction during discourse development. In this research paper, we propose a novel integrative NLP model named Contextualized Anticipatory Semantic Humor Analysis (CASHA), which creates a sophisticated blend of semantic context understanding, discourse reference instantiation, and humorous setting anticipation. Inspired by human cognitive processing, CASHA layers a sentence-level semantic extractor and a transformer-based discourse modelling layer harboring informal semantics to understand intricate discourse embeddings accurately. It subsequently employs an adaptive humor anticipation layer based logically on previous discourse understanding. For rigorous model evaluation, we performed several experiments across diverse data sets encompassing assorted types of humor. Results demonstrate significantly improved performance in both humor detection and humor semantics understanding. They prompt profound thinking about NLP applications regarding human-level understanding of semantics from context. This work represents a potentially influential step in advancing the transformative urban initiatives prioritized by smart cities-examples abound about interfaces for ordinary citizens to interact more creatively with city experiences and for cities authorities to react empathetically to citizen-specific humor, metaphors, and cultural dialects."
19
+ example_title: "Example 3"
20
+ pipeline_tag: text2text-generation
21
  ---
22
+ # Model Card
23
 
24
+ [Add more information here](https://huggingface.co/templates/model-card-example)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ ## Example Usage
27
 
28
+ ```python3
29
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
30
 
31
+ tokenizer = AutoTokenizer.from_pretrained('CCB/abstracts_to_tweet_model', revision=None) # Load tokenizer
32
+ model = AutoModelForSeq2SeqLM.from_pretrained('CCB/abstracts_to_tweet_model', revision=None) # Load model
33
+ pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id)
34
 
35
+ inputs = ['In this paper, we present a novel method for Natural Language Processing (NLP) based on the introduction of deep learning techniques adapted to linguistics. We demonstrate that by integrating syntactic and semantic analysis in pre-processing stages, superior text understanding can be facilitated. Initial processes involve tokenization, POS-tagging, syntactic-semantic hinging for all corpus. To further the learning precision, we introduce a framework powered by a hybrid of Transformer and Recurrent Neural Networks architectures that manifest in increased efficiency both theoretically and empirically. This paper shares exhaustive results, detailing improvements in feature engineering, promising a reduction in human-size semantic labor. We additionally propose that integrating deep learning methods with traditional linguistics dramatically improves contextual understanding and performance on tasks such as language translation, sentiment analysis, and automated thesaurus generation. The innovations reported here make significant strides towards realizing viable, sophisticated machine-level NLP systems. Additionally, the research represents groundwork for further exploration and development promising higher degrees of culture-language contextuality and robustness integral in future NLP applications.']
36
+ print(pipe(inputs, max_length=512, do_sample=False))
37
+ ```
38
 
39
+ ---
40
+ This model was trained with a synthetic dataset with [DataDreamer 🤖💤](https://datadreamer.dev). The synthetic dataset card and model card can be found [here](datadreamer.json). The training arguments can be found [here](training_args.json).