# -*- coding: utf-8 -*- """ML.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1N6R2R3PY04PitBN4M6QNX-tuBPdqglVz """ from google.colab import drive drive.mount('/content/drive') import pandas as pd file_path = '/content/drive/My Drive/CIS 519 Final Project/Dataset/cleaned_headlines.csv' df = pd.read_csv(file_path) df class_counts = df['outlet'].value_counts() print(class_counts) from sklearn.model_selection import train_test_split X = df['title'] y = df['labels'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(max_features=5000, ngram_range=(1, 2), stop_words='english') X_train_tfidf = tfidf.fit_transform(X_train) X_test_tfidf = tfidf.transform(X_test) """# Logistic Regression""" from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report model = LogisticRegression(max_iter=200) model.fit(X_train_tfidf, y_train) y_pred = model.predict(X_test_tfidf) accuracy = accuracy_score(y_test, y_pred) print(f"Logistic Regression Accuracy: {accuracy:.4f}") print(classification_report(y_test, y_pred)) """# Random Forest""" from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(X_train_tfidf, y_train) y_pred = model.predict(X_test_tfidf) accuracy = accuracy_score(y_test, y_pred) print(f"Random Forest Accuracy: {accuracy:.4f}") print(classification_report(y_test, y_pred)) """# Support Vector Machine""" from sklearn.svm import SVC svm_model = SVC(kernel='linear', random_state=42) svm_model.fit(X_train_tfidf, y_train) y_pred = svm_model.predict(X_test_tfidf) accuracy = accuracy_score(y_test, y_pred) print(f"Random Forest Accuracy: {accuracy:.4f}") print(classification_report(y_test, y_pred))