File size: 4,305 Bytes
f4b76fa
 
 
 
 
 
 
 
 
 
64bf9c8
 
abcc3c5
 
f4b76fa
 
 
 
 
 
 
abcc3c5
f4b76fa
f32fa76
 
 
 
 
f4b76fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f32fa76
f4b76fa
 
 
 
 
f32fa76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4b76fa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
tags:
- simplification
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-clara-med
  results: []
datasets:
  - lcampillos/CLARA-MeD
dataset:
  - lcampillos/CLARA-MeD
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-clara-med

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [CLARA-MeD](https://huggingface.co/lcampillos/CLARA-MeD) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9850
- Rouge1: 33.0363
- Rouge2: 19.0613
- Rougel: 30.295
- Rougelsum: 30.2898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log        | 1.0   | 190  | 3.0286          | 18.0709 | 7.727   | 16.1995 | 16.3348   |
| No log        | 2.0   | 380  | 2.4754          | 24.9167 | 13.0501 | 22.3889 | 22.4724   |
| 6.79          | 3.0   | 570  | 2.3542          | 29.9908 | 15.9829 | 26.3751 | 26.4343   |
| 6.79          | 4.0   | 760  | 2.2894          | 30.4435 | 16.3176 | 27.1801 | 27.1926   |
| 3.1288        | 5.0   | 950  | 2.2440          | 30.8602 | 16.8033 | 27.8195 | 27.8355   |
| 3.1288        | 6.0   | 1140 | 2.1772          | 31.4202 | 17.3253 | 28.3394 | 28.3699   |
| 3.1288        | 7.0   | 1330 | 2.1584          | 31.5591 | 17.7302 | 28.618  | 28.6189   |
| 2.7919        | 8.0   | 1520 | 2.1286          | 31.6211 | 17.7423 | 28.7218 | 28.7462   |
| 2.7919        | 9.0   | 1710 | 2.1031          | 31.9724 | 18.017  | 29.0754 | 29.0744   |
| 2.6007        | 10.0  | 1900 | 2.0947          | 32.1588 | 18.2474 | 29.2957 | 29.2956   |
| 2.6007        | 11.0  | 2090 | 2.0914          | 32.4959 | 18.4197 | 29.6052 | 29.609    |
| 2.6007        | 12.0  | 2280 | 2.0726          | 32.6673 | 18.8962 | 29.9145 | 29.9122   |
| 2.4911        | 13.0  | 2470 | 2.0487          | 32.4461 | 18.6804 | 29.6224 | 29.6274   |
| 2.4911        | 14.0  | 2660 | 2.0436          | 32.8393 | 19.0315 | 30.1024 | 30.1097   |
| 2.4168        | 15.0  | 2850 | 2.0229          | 32.8235 | 18.9549 | 30.0699 | 30.0605   |
| 2.4168        | 16.0  | 3040 | 2.0253          | 32.8584 | 18.8602 | 30.0582 | 30.0712   |
| 2.4168        | 17.0  | 3230 | 2.0177          | 32.7145 | 18.9059 | 30.0436 | 30.0771   |
| 2.3452        | 18.0  | 3420 | 2.0151          | 32.6874 | 18.8339 | 29.9739 | 30.0004   |
| 2.3452        | 19.0  | 3610 | 2.0138          | 32.516  | 18.6562 | 29.7823 | 29.7951   |
| 2.302         | 20.0  | 3800 | 2.0085          | 32.8117 | 18.8208 | 30.0902 | 30.1282   |
| 2.302         | 21.0  | 3990 | 2.0043          | 32.7633 | 18.8364 | 30.0619 | 30.0781   |
| 2.302         | 22.0  | 4180 | 1.9972          | 32.9786 | 19.0354 | 30.2166 | 30.2286   |
| 2.2641        | 23.0  | 4370 | 1.9927          | 33.0222 | 19.0501 | 30.2716 | 30.2951   |
| 2.2641        | 24.0  | 4560 | 1.9905          | 32.9557 | 18.9958 | 30.1988 | 30.2004   |
| 2.2366        | 25.0  | 4750 | 1.9897          | 33.0429 | 18.9806 | 30.2861 | 30.3012   |
| 2.2366        | 26.0  | 4940 | 1.9850          | 33.047  | 19.118  | 30.3437 | 30.3368   |
| 2.2366        | 27.0  | 5130 | 1.9860          | 33.0736 | 19.0805 | 30.3311 | 30.3476   |
| 2.2157        | 28.0  | 5320 | 1.9870          | 33.0698 | 19.0649 | 30.2959 | 30.3093   |
| 2.2157        | 29.0  | 5510 | 1.9844          | 33.0376 | 19.0397 | 30.299  | 30.2839   |
| 2.2131        | 30.0  | 5700 | 1.9850          | 33.0363 | 19.0613 | 30.295  | 30.2898   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.8.0
- Tokenizers 0.12.1