losca commited on
Commit
800f655
·
1 Parent(s): 76cb955

Update README.md

Browse files

Added example of usage

Files changed (1) hide show
  1. README.md +25 -0
README.md CHANGED
@@ -11,6 +11,31 @@ metrics:
11
  - sacrebleu
12
  ---
13
  Pure fine-tuning version of MarianMT en-zh on Indonesian Language
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ### Training results
15
 
16
  | Epoch | Bleu |
 
11
  - sacrebleu
12
  ---
13
  Pure fine-tuning version of MarianMT en-zh on Indonesian Language
14
+
15
+ ### Example
16
+ ```
17
+ %%capture
18
+ !pip install transformers transformers[sentencepiece]
19
+
20
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
21
+ # Download the pretrained model for English-Vietnamese available on the hub
22
+ model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-pure")
23
+
24
+ tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-pure")
25
+ # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it
26
+ # We used the one coming from the initial model
27
+ # This tokenizer is used to tokenize the input sentence
28
+ tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh')
29
+ # These special tokens are needed to reproduce the original tokenizer
30
+ tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True)
31
+
32
+ sentence = "The cat is on the table"
33
+ # This token is needed to identify the target language
34
+ input_sentence = "<2indo> " + sentence
35
+ translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True))
36
+ output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
37
+ ```
38
+
39
  ### Training results
40
 
41
  | Epoch | Bleu |