CSAle commited on
Commit
f15b897
·
1 Parent(s): 6fafdec

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.73 +/- 25.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c4a07a050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c4a07a0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c4a07a170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c4a07a200>", "_build": "<function ActorCriticPolicy._build at 0x7f7c4a07a290>", "forward": "<function ActorCriticPolicy.forward at 0x7f7c4a07a320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c4a07a3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7c4a07a440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c4a07a4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c4a07a560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c4a07a5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7c4a071d40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674174869100080599, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa22r3D0T+6386UskVh6zDWvbM7770PMwAAgD8AAAAAZkatPFWbmz46tnW9Bq6FvkbhUDwok/m8AAAAAAAAAAA9CqC+qRQwPZH+nT2KODI86bjgvijmTT0AAIA/AACAP2owc755RJI/tW8Dvy0T8b4vPIS+rU/NvQAAAAAAAAAA81iAPewpz7lBKp+2os7UsegaVDsdcrs1AACAPwAAgD/NivC9HEh/vBqvNj1ppgy96Ff7PQUb4z0AAIA/AACAP5owqz2P+ku6JGpCuwVXkLbRkfQ6q3RlOgAAgD8AAAAAZgR5PLR38z3m7H++/204vl3llb1jT4i8AAAAAAAAAADzMI69g2VOP2LAA74NP5i+9S5yvbPtNL0AAAAAAAAAABrCN73CJSk/5qxuPElys74VrPm8uodIPQAAAAAAAAAAzv/XvjAPfD+EfT2+VMLSvgfVeb4xmpY9AAAAAAAAAAAgZDO+C6gYP815CT094c++hG1nvS1JfbsAAAAAAAAAAA1MJT55FFc/RU5MPuAh0b5ngj0+D2U7vQAAAAAAAAAAGvzfvT1aALmq6oG7NBp+OBCVxbu9FXc5AACAPwAAAADaVri9KThduuhCaDpeu/M1nkGrukBriLkAAIA/AAAAAGb+WTxcE2i6ZvUhufLnibQIV3y6uLo6OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEce6uA0mcUCUhpRSlIwBbJRNuwKMAXSUR0DD/8FcW0qpdX2UKGgGaAloD0MIEcZP417LbECUhpRSlGgVTXEBaBZHQMP/8nWJ79h1fZQoaAZoCWgPQwi+LsN/ukBmQJSGlFKUaBVN6ANoFkdAxAA8kGiYcHV9lChoBmgJaA9DCHYb1H5rGXBAlIaUUpRoFU2rAWgWR0DEAEOHck+pdX2UKGgGaAloD0MIu9OdJ56Kb0CUhpRSlGgVTfcCaBZHQMQAYXZf2K51fZQoaAZoCWgPQwipMSHmkphsQJSGlFKUaBVNdwJoFkdAxABt5/LDAXV9lChoBmgJaA9DCAu2EU/2OG5AlIaUUpRoFU2dAWgWR0DEAILfHggpdX2UKGgGaAloD0MIv5oDBPMWcECUhpRSlGgVTT4BaBZHQMQAiPwVj7R1fZQoaAZoCWgPQwiPcjCbAFFHQJSGlFKUaBVLxmgWR0DEAJiuwHJLdX2UKGgGaAloD0MIgPChRAtvcUCUhpRSlGgVTaMBaBZHQMQAtCswL3N1fZQoaAZoCWgPQwiHb2HdOAJwQJSGlFKUaBVNZQFoFkdAxADRZTQ3P3V9lChoBmgJaA9DCPLQd7ey0EFAlIaUUpRoFUvIaBZHQMQA5mZ/kNp1fZQoaAZoCWgPQwhSK0zf60ZvQJSGlFKUaBVNEQJoFkdAxAD5tY0VJ3V9lChoBmgJaA9DCOT5DKg35z9AlIaUUpRoFUvEaBZHQMQBIhfBvaV1fZQoaAZoCWgPQwgurBvvjohCQJSGlFKUaBVLtGgWR0DEASbe9Ba+dX2UKGgGaAloD0MIPnYXKCmMOUCUhpRSlGgVS9FoFkdAxAFc+WWyDHV9lChoBmgJaA9DCH089N3tCHFAlIaUUpRoFU0MAmgWR0DEAWg1zhgmdX2UKGgGaAloD0MINXugFRhyRUCUhpRSlGgVS8NoFkdAxAGIIhQm/nV9lChoBmgJaA9DCNf34SChvHJAlIaUUpRoFU2hAWgWR0DEAZTWmP5pdX2UKGgGaAloD0MIs5lDUgtDb0CUhpRSlGgVTYYBaBZHQMQBoZJK8L91fZQoaAZoCWgPQwjlfLH3YgZvQJSGlFKUaBVNkwFoFkdAxAHMPKdQPHV9lChoBmgJaA9DCB2u1R72g3FAlIaUUpRoFU2xAWgWR0DEAdBKDkELdX2UKGgGaAloD0MIntLB+j8NbUCUhpRSlGgVTREBaBZHQMQCCzbnHNp1fZQoaAZoCWgPQwggtYmT+9EzQJSGlFKUaBVLymgWR0DEAg/OY6XCdX2UKGgGaAloD0MILUKxFTRkb0CUhpRSlGgVTRwDaBZHQMQE7GhmGud1fZQoaAZoCWgPQwjPTgZHyUVsQJSGlFKUaBVNcgNoFkdAxAT3eruIAXV9lChoBmgJaA9DCD+Ne/MbUmJAlIaUUpRoFU3oA2gWR0DEBP3Q8fV7dX2UKGgGaAloD0MIelG7X0WAckCUhpRSlGgVTTkBaBZHQMQFADmjj711fZQoaAZoCWgPQwiNQpJZvRFPQJSGlFKUaBVL52gWR0DEBSj3M6ikdX2UKGgGaAloD0MIHsL4aVw9bECUhpRSlGgVS+toFkdAxAUw+hXbNHV9lChoBmgJaA9DCCrj32dch3BAlIaUUpRoFU1YAWgWR0DEBVzH6uW9dX2UKGgGaAloD0MIz7uxoDD4YkCUhpRSlGgVTegDaBZHQMQFYqeCkGl1fZQoaAZoCWgPQwgH8BZIEAlwQJSGlFKUaBVN+QFoFkdAxAVoQFLWZ3V9lChoBmgJaA9DCFnDRe5pUGZAlIaUUpRoFU3oA2gWR0DEBXsXYUWVdX2UKGgGaAloD0MIUMb4MHtwb0CUhpRSlGgVTV0CaBZHQMQFi9Zq20B1fZQoaAZoCWgPQwj+D7BW7cRGQJSGlFKUaBVL1WgWR0DEBarPyCnQdX2UKGgGaAloD0MI3SIw1rd0cECUhpRSlGgVTWIBaBZHQMQFzcnVoYh1fZQoaAZoCWgPQwj2fqMdtylzQJSGlFKUaBVNLgJoFkdAxAX5CBPKuHV9lChoBmgJaA9DCFIrTN9rfDVAlIaUUpRoFUvEaBZHQMQGGjhcZ+B1fZQoaAZoCWgPQwgjZvZ5THZxQJSGlFKUaBVNcwFoFkdAxAYnzshPkHV9lChoBmgJaA9DCPF/R1SoCHBAlIaUUpRoFU0MAWgWR0DEBjyxTsIFdX2UKGgGaAloD0MI0a3X9CDxcECUhpRSlGgVS/BoFkdAxAZUepXIVHV9lChoBmgJaA9DCAk3GVUGBW5AlIaUUpRoFU1IAWgWR0DEBmwTmGM5dX2UKGgGaAloD0MIVvKxu8AScUCUhpRSlGgVTVQBaBZHQMQGg2OyVwB1fZQoaAZoCWgPQwiJXdvbbapyQJSGlFKUaBVNPAJoFkdAxAaIGmDUVnV9lChoBmgJaA9DCP2k2qejWXBAlIaUUpRoFU2sAWgWR0DEBo6NKh+OdX2UKGgGaAloD0MIRSv3ArMKJ0CUhpRSlGgVS8doFkdAxAapHHWBjHV9lChoBmgJaA9DCDQtsTIaUnFAlIaUUpRoFUv8aBZHQMQGqfMGHHp1fZQoaAZoCWgPQwhmEYqtYHJwQJSGlFKUaBVNBAJoFkdAxAatxiobXHV9lChoBmgJaA9DCG78icoGWmJAlIaUUpRoFU3oA2gWR0DEBq8/MW43dX2UKGgGaAloD0MIhQg4hOpfckCUhpRSlGgVTYYBaBZHQMQG9brLQol1fZQoaAZoCWgPQwipEfqZOsNxQJSGlFKUaBVNQAFoFkdAxAcqmpEQXnV9lChoBmgJaA9DCCXNH9Pa9nBAlIaUUpRoFU1DAWgWR0DEB1BnlGPQdX2UKGgGaAloD0MIhhvw+eFwYUCUhpRSlGgVTegDaBZHQMQHa02LpA51fZQoaAZoCWgPQwhGBrmLMIxQQJSGlFKUaBVL32gWR0DEB2tvXK8tdX2UKGgGaAloD0MIkUQvo9isbkCUhpRSlGgVTT8BaBZHQMQHk8Rcu8N1fZQoaAZoCWgPQwhavcPt0HJHQJSGlFKUaBVLv2gWR0DEB55mCiAUdX2UKGgGaAloD0MI8DSZ8fZtcECUhpRSlGgVTSYDaBZHQMQH2JUo8ZF1fZQoaAZoCWgPQwi+Zrls9EZxQJSGlFKUaBVN5gFoFkdAxAf1XFtKqXV9lChoBmgJaA9DCHDNHf0vm3JAlIaUUpRoFU2wAWgWR0DEB/6XpnpTdX2UKGgGaAloD0MInRIQk3A8cECUhpRSlGgVTUgCaBZHQMQIHDzAeq91fZQoaAZoCWgPQwgkDW5rC1llQJSGlFKUaBVN6ANoFkdAxArTTuv2XnV9lChoBmgJaA9DCAcoDTWKWXBAlIaUUpRoFUv5aBZHQMQK2y/TLGJ1fZQoaAZoCWgPQwhy+nq+Ju1wQJSGlFKUaBVNQAFoFkdAxArbRVp9JHV9lChoBmgJaA9DCIunHmkwiHFAlIaUUpRoFU1CAWgWR0DECv2JLuhLdX2UKGgGaAloD0MIQSlauRdXcUCUhpRSlGgVS/xoFkdAxAsBMV1wHnV9lChoBmgJaA9DCHuCxHZ39XFAlIaUUpRoFU2IAmgWR0DECyrcdo38dX2UKGgGaAloD0MIdzHNdK91UUCUhpRSlGgVS7NoFkdAxAtkuoxYaHV9lChoBmgJaA9DCF6CUx/IPXJAlIaUUpRoFU3EAmgWR0DEC3pIQOFydX2UKGgGaAloD0MICvKzkev7b0CUhpRSlGgVTZgBaBZHQMQLk0yYXwd1fZQoaAZoCWgPQwjDZoALslpxQJSGlFKUaBVN/wJoFkdAxAvdRFZxJnV9lChoBmgJaA9DCLe3W5IDGWxAlIaUUpRoFU1MAWgWR0DEC/3aakRBdX2UKGgGaAloD0MIVb5nJELgcUCUhpRSlGgVTSEBaBZHQMQMAwJgLJF1fZQoaAZoCWgPQwhBtixfl9ZwQJSGlFKUaBVNPwFoFkdAxAwZUMoc73V9lChoBmgJaA9DCDgUPltHNXJAlIaUUpRoFU3nAWgWR0DEDBs495hSdX2UKGgGaAloD0MITDeJQSDscUCUhpRSlGgVTcoBaBZHQMQMIB6KLsN1fZQoaAZoCWgPQwhPsWoQZlxwQJSGlFKUaBVNKwFoFkdAxAw6VHFxXHV9lChoBmgJaA9DCMH+69w0I29AlIaUUpRoFU29A2gWR0DEDII2sJY1dX2UKGgGaAloD0MIntLB+j/Mb0CUhpRSlGgVTTcBaBZHQMQMgkxyn1p1fZQoaAZoCWgPQwiHFAMk2gBzQJSGlFKUaBVN3gJoFkdAxAyGy9EkSnV9lChoBmgJaA9DCHEBaJQuFSdAlIaUUpRoFUvKaBZHQMQMkyLAHml1fZQoaAZoCWgPQwjFO8CTFtJEQJSGlFKUaBVLrWgWR0DEDJhl+VkddX2UKGgGaAloD0MIO8Q/bOmfcECUhpRSlGgVTTsBaBZHQMQMmTAN5MV1fZQoaAZoCWgPQwi2vd2SHDVgQJSGlFKUaBVN6ANoFkdAxAykNqgyunV9lChoBmgJaA9DCNZSQNr/CCJAlIaUUpRoFUvEaBZHQMQMwbJGOMl1fZQoaAZoCWgPQwgZq83/KzBuQJSGlFKUaBVNCwFoFkdAxAzlQtz0YnV9lChoBmgJaA9DCNpyLsVVfm9AlIaUUpRoFU0WAWgWR0DEDSKraM72dX2UKGgGaAloD0MIxAjh0cbeUUCUhpRSlGgVS7hoFkdAxA0tLTx5LXV9lChoBmgJaA9DCI3SpX9JyjpAlIaUUpRoFUvZaBZHQMQNOLeZXuF1fZQoaAZoCWgPQwiuuDgqN5EKQJSGlFKUaBVLxmgWR0DEDUfvttygdX2UKGgGaAloD0MIH0sfuuDtcUCUhpRSlGgVTa4BaBZHQMQNhjKPn0V1fZQoaAZoCWgPQwiKOnMPCVBuQJSGlFKUaBVNOQFoFkdAxA2GUuctoXV9lChoBmgJaA9DCPw07s3vuXBAlIaUUpRoFU1GAWgWR0DEDZBsyi22dX2UKGgGaAloD0MIXJAty9drb0CUhpRSlGgVTQIBaBZHQMQNwSSmqHZ1fZQoaAZoCWgPQwhYrUz4pU4SQJSGlFKUaBVLwGgWR0DEDdyGi5/cdX2UKGgGaAloD0MIHEC/718scUCUhpRSlGgVTZkBaBZHQMQN6cTakAR1fZQoaAZoCWgPQwgj+UogpelhQJSGlFKUaBVN6ANoFkdAxA329gWrO3V9lChoBmgJaA9DCFYrE35p0nBAlIaUUpRoFU2kA2gWR0DEDf34EfT1dX2UKGgGaAloD0MIr9LddbagcUCUhpRSlGgVTUUCaBZHQMQODL5qM3t1fZQoaAZoCWgPQwhf1O5XAWZkQJSGlFKUaBVN6ANoFkdAxA4TEc81XXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:058e4ad33f557b2a0eaa004984a6be6a055415699d6bb8c60a3f8b402330d51a
3
+ size 147400
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c4a07a050>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c4a07a0e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c4a07a170>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c4a07a200>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7c4a07a290>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7c4a07a320>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c4a07a3b0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7c4a07a440>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c4a07a4d0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c4a07a560>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c4a07a5f0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f7c4a071d40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1674174869100080599,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa22r3D0T+6386UskVh6zDWvbM7770PMwAAgD8AAAAAZkatPFWbmz46tnW9Bq6FvkbhUDwok/m8AAAAAAAAAAA9CqC+qRQwPZH+nT2KODI86bjgvijmTT0AAIA/AACAP2owc755RJI/tW8Dvy0T8b4vPIS+rU/NvQAAAAAAAAAA81iAPewpz7lBKp+2os7UsegaVDsdcrs1AACAPwAAgD/NivC9HEh/vBqvNj1ppgy96Ff7PQUb4z0AAIA/AACAP5owqz2P+ku6JGpCuwVXkLbRkfQ6q3RlOgAAgD8AAAAAZgR5PLR38z3m7H++/204vl3llb1jT4i8AAAAAAAAAADzMI69g2VOP2LAA74NP5i+9S5yvbPtNL0AAAAAAAAAABrCN73CJSk/5qxuPElys74VrPm8uodIPQAAAAAAAAAAzv/XvjAPfD+EfT2+VMLSvgfVeb4xmpY9AAAAAAAAAAAgZDO+C6gYP815CT094c++hG1nvS1JfbsAAAAAAAAAAA1MJT55FFc/RU5MPuAh0b5ngj0+D2U7vQAAAAAAAAAAGvzfvT1aALmq6oG7NBp+OBCVxbu9FXc5AACAPwAAAADaVri9KThduuhCaDpeu/M1nkGrukBriLkAAIA/AAAAAGb+WTxcE2i6ZvUhufLnibQIV3y6uLo6OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEce6uA0mcUCUhpRSlIwBbJRNuwKMAXSUR0DD/8FcW0qpdX2UKGgGaAloD0MIEcZP417LbECUhpRSlGgVTXEBaBZHQMP/8nWJ79h1fZQoaAZoCWgPQwi+LsN/ukBmQJSGlFKUaBVN6ANoFkdAxAA8kGiYcHV9lChoBmgJaA9DCHYb1H5rGXBAlIaUUpRoFU2rAWgWR0DEAEOHck+pdX2UKGgGaAloD0MIu9OdJ56Kb0CUhpRSlGgVTfcCaBZHQMQAYXZf2K51fZQoaAZoCWgPQwipMSHmkphsQJSGlFKUaBVNdwJoFkdAxABt5/LDAXV9lChoBmgJaA9DCAu2EU/2OG5AlIaUUpRoFU2dAWgWR0DEAILfHggpdX2UKGgGaAloD0MIv5oDBPMWcECUhpRSlGgVTT4BaBZHQMQAiPwVj7R1fZQoaAZoCWgPQwiPcjCbAFFHQJSGlFKUaBVLxmgWR0DEAJiuwHJLdX2UKGgGaAloD0MIgPChRAtvcUCUhpRSlGgVTaMBaBZHQMQAtCswL3N1fZQoaAZoCWgPQwiHb2HdOAJwQJSGlFKUaBVNZQFoFkdAxADRZTQ3P3V9lChoBmgJaA9DCPLQd7ey0EFAlIaUUpRoFUvIaBZHQMQA5mZ/kNp1fZQoaAZoCWgPQwhSK0zf60ZvQJSGlFKUaBVNEQJoFkdAxAD5tY0VJ3V9lChoBmgJaA9DCOT5DKg35z9AlIaUUpRoFUvEaBZHQMQBIhfBvaV1fZQoaAZoCWgPQwgurBvvjohCQJSGlFKUaBVLtGgWR0DEASbe9Ba+dX2UKGgGaAloD0MIPnYXKCmMOUCUhpRSlGgVS9FoFkdAxAFc+WWyDHV9lChoBmgJaA9DCH089N3tCHFAlIaUUpRoFU0MAmgWR0DEAWg1zhgmdX2UKGgGaAloD0MINXugFRhyRUCUhpRSlGgVS8NoFkdAxAGIIhQm/nV9lChoBmgJaA9DCNf34SChvHJAlIaUUpRoFU2hAWgWR0DEAZTWmP5pdX2UKGgGaAloD0MIs5lDUgtDb0CUhpRSlGgVTYYBaBZHQMQBoZJK8L91fZQoaAZoCWgPQwjlfLH3YgZvQJSGlFKUaBVNkwFoFkdAxAHMPKdQPHV9lChoBmgJaA9DCB2u1R72g3FAlIaUUpRoFU2xAWgWR0DEAdBKDkELdX2UKGgGaAloD0MIntLB+j8NbUCUhpRSlGgVTREBaBZHQMQCCzbnHNp1fZQoaAZoCWgPQwggtYmT+9EzQJSGlFKUaBVLymgWR0DEAg/OY6XCdX2UKGgGaAloD0MILUKxFTRkb0CUhpRSlGgVTRwDaBZHQMQE7GhmGud1fZQoaAZoCWgPQwjPTgZHyUVsQJSGlFKUaBVNcgNoFkdAxAT3eruIAXV9lChoBmgJaA9DCD+Ne/MbUmJAlIaUUpRoFU3oA2gWR0DEBP3Q8fV7dX2UKGgGaAloD0MIelG7X0WAckCUhpRSlGgVTTkBaBZHQMQFADmjj711fZQoaAZoCWgPQwiNQpJZvRFPQJSGlFKUaBVL52gWR0DEBSj3M6ikdX2UKGgGaAloD0MIHsL4aVw9bECUhpRSlGgVS+toFkdAxAUw+hXbNHV9lChoBmgJaA9DCCrj32dch3BAlIaUUpRoFU1YAWgWR0DEBVzH6uW9dX2UKGgGaAloD0MIz7uxoDD4YkCUhpRSlGgVTegDaBZHQMQFYqeCkGl1fZQoaAZoCWgPQwgH8BZIEAlwQJSGlFKUaBVN+QFoFkdAxAVoQFLWZ3V9lChoBmgJaA9DCFnDRe5pUGZAlIaUUpRoFU3oA2gWR0DEBXsXYUWVdX2UKGgGaAloD0MIUMb4MHtwb0CUhpRSlGgVTV0CaBZHQMQFi9Zq20B1fZQoaAZoCWgPQwj+D7BW7cRGQJSGlFKUaBVL1WgWR0DEBarPyCnQdX2UKGgGaAloD0MI3SIw1rd0cECUhpRSlGgVTWIBaBZHQMQFzcnVoYh1fZQoaAZoCWgPQwj2fqMdtylzQJSGlFKUaBVNLgJoFkdAxAX5CBPKuHV9lChoBmgJaA9DCFIrTN9rfDVAlIaUUpRoFUvEaBZHQMQGGjhcZ+B1fZQoaAZoCWgPQwgjZvZ5THZxQJSGlFKUaBVNcwFoFkdAxAYnzshPkHV9lChoBmgJaA9DCPF/R1SoCHBAlIaUUpRoFU0MAWgWR0DEBjyxTsIFdX2UKGgGaAloD0MI0a3X9CDxcECUhpRSlGgVS/BoFkdAxAZUepXIVHV9lChoBmgJaA9DCAk3GVUGBW5AlIaUUpRoFU1IAWgWR0DEBmwTmGM5dX2UKGgGaAloD0MIVvKxu8AScUCUhpRSlGgVTVQBaBZHQMQGg2OyVwB1fZQoaAZoCWgPQwiJXdvbbapyQJSGlFKUaBVNPAJoFkdAxAaIGmDUVnV9lChoBmgJaA9DCP2k2qejWXBAlIaUUpRoFU2sAWgWR0DEBo6NKh+OdX2UKGgGaAloD0MIRSv3ArMKJ0CUhpRSlGgVS8doFkdAxAapHHWBjHV9lChoBmgJaA9DCDQtsTIaUnFAlIaUUpRoFUv8aBZHQMQGqfMGHHp1fZQoaAZoCWgPQwhmEYqtYHJwQJSGlFKUaBVNBAJoFkdAxAatxiobXHV9lChoBmgJaA9DCG78icoGWmJAlIaUUpRoFU3oA2gWR0DEBq8/MW43dX2UKGgGaAloD0MIhQg4hOpfckCUhpRSlGgVTYYBaBZHQMQG9brLQol1fZQoaAZoCWgPQwipEfqZOsNxQJSGlFKUaBVNQAFoFkdAxAcqmpEQXnV9lChoBmgJaA9DCCXNH9Pa9nBAlIaUUpRoFU1DAWgWR0DEB1BnlGPQdX2UKGgGaAloD0MIhhvw+eFwYUCUhpRSlGgVTegDaBZHQMQHa02LpA51fZQoaAZoCWgPQwhGBrmLMIxQQJSGlFKUaBVL32gWR0DEB2tvXK8tdX2UKGgGaAloD0MIkUQvo9isbkCUhpRSlGgVTT8BaBZHQMQHk8Rcu8N1fZQoaAZoCWgPQwhavcPt0HJHQJSGlFKUaBVLv2gWR0DEB55mCiAUdX2UKGgGaAloD0MI8DSZ8fZtcECUhpRSlGgVTSYDaBZHQMQH2JUo8ZF1fZQoaAZoCWgPQwi+Zrls9EZxQJSGlFKUaBVN5gFoFkdAxAf1XFtKqXV9lChoBmgJaA9DCHDNHf0vm3JAlIaUUpRoFU2wAWgWR0DEB/6XpnpTdX2UKGgGaAloD0MInRIQk3A8cECUhpRSlGgVTUgCaBZHQMQIHDzAeq91fZQoaAZoCWgPQwgkDW5rC1llQJSGlFKUaBVN6ANoFkdAxArTTuv2XnV9lChoBmgJaA9DCAcoDTWKWXBAlIaUUpRoFUv5aBZHQMQK2y/TLGJ1fZQoaAZoCWgPQwhy+nq+Ju1wQJSGlFKUaBVNQAFoFkdAxArbRVp9JHV9lChoBmgJaA9DCIunHmkwiHFAlIaUUpRoFU1CAWgWR0DECv2JLuhLdX2UKGgGaAloD0MIQSlauRdXcUCUhpRSlGgVS/xoFkdAxAsBMV1wHnV9lChoBmgJaA9DCHuCxHZ39XFAlIaUUpRoFU2IAmgWR0DECyrcdo38dX2UKGgGaAloD0MIdzHNdK91UUCUhpRSlGgVS7NoFkdAxAtkuoxYaHV9lChoBmgJaA9DCF6CUx/IPXJAlIaUUpRoFU3EAmgWR0DEC3pIQOFydX2UKGgGaAloD0MICvKzkev7b0CUhpRSlGgVTZgBaBZHQMQLk0yYXwd1fZQoaAZoCWgPQwjDZoALslpxQJSGlFKUaBVN/wJoFkdAxAvdRFZxJnV9lChoBmgJaA9DCLe3W5IDGWxAlIaUUpRoFU1MAWgWR0DEC/3aakRBdX2UKGgGaAloD0MIVb5nJELgcUCUhpRSlGgVTSEBaBZHQMQMAwJgLJF1fZQoaAZoCWgPQwhBtixfl9ZwQJSGlFKUaBVNPwFoFkdAxAwZUMoc73V9lChoBmgJaA9DCDgUPltHNXJAlIaUUpRoFU3nAWgWR0DEDBs495hSdX2UKGgGaAloD0MITDeJQSDscUCUhpRSlGgVTcoBaBZHQMQMIB6KLsN1fZQoaAZoCWgPQwhPsWoQZlxwQJSGlFKUaBVNKwFoFkdAxAw6VHFxXHV9lChoBmgJaA9DCMH+69w0I29AlIaUUpRoFU29A2gWR0DEDII2sJY1dX2UKGgGaAloD0MIntLB+j/Mb0CUhpRSlGgVTTcBaBZHQMQMgkxyn1p1fZQoaAZoCWgPQwiHFAMk2gBzQJSGlFKUaBVN3gJoFkdAxAyGy9EkSnV9lChoBmgJaA9DCHEBaJQuFSdAlIaUUpRoFUvKaBZHQMQMkyLAHml1fZQoaAZoCWgPQwjFO8CTFtJEQJSGlFKUaBVLrWgWR0DEDJhl+VkddX2UKGgGaAloD0MIO8Q/bOmfcECUhpRSlGgVTTsBaBZHQMQMmTAN5MV1fZQoaAZoCWgPQwi2vd2SHDVgQJSGlFKUaBVN6ANoFkdAxAykNqgyunV9lChoBmgJaA9DCNZSQNr/CCJAlIaUUpRoFUvEaBZHQMQMwbJGOMl1fZQoaAZoCWgPQwgZq83/KzBuQJSGlFKUaBVNCwFoFkdAxAzlQtz0YnV9lChoBmgJaA9DCNpyLsVVfm9AlIaUUpRoFU0WAWgWR0DEDSKraM72dX2UKGgGaAloD0MIxAjh0cbeUUCUhpRSlGgVS7hoFkdAxA0tLTx5LXV9lChoBmgJaA9DCI3SpX9JyjpAlIaUUpRoFUvZaBZHQMQNOLeZXuF1fZQoaAZoCWgPQwiuuDgqN5EKQJSGlFKUaBVLxmgWR0DEDUfvttygdX2UKGgGaAloD0MIH0sfuuDtcUCUhpRSlGgVTa4BaBZHQMQNhjKPn0V1fZQoaAZoCWgPQwiKOnMPCVBuQJSGlFKUaBVNOQFoFkdAxA2GUuctoXV9lChoBmgJaA9DCPw07s3vuXBAlIaUUpRoFU1GAWgWR0DEDZBsyi22dX2UKGgGaAloD0MIXJAty9drb0CUhpRSlGgVTQIBaBZHQMQNwSSmqHZ1fZQoaAZoCWgPQwhYrUz4pU4SQJSGlFKUaBVLwGgWR0DEDdyGi5/cdX2UKGgGaAloD0MIHEC/718scUCUhpRSlGgVTZkBaBZHQMQN6cTakAR1fZQoaAZoCWgPQwgj+UogpelhQJSGlFKUaBVN6ANoFkdAxA329gWrO3V9lChoBmgJaA9DCFYrE35p0nBAlIaUUpRoFU2kA2gWR0DEDf34EfT1dX2UKGgGaAloD0MIr9LddbagcUCUhpRSlGgVTUUCaBZHQMQODL5qM3t1fZQoaAZoCWgPQwhf1O5XAWZkQJSGlFKUaBVN6ANoFkdAxA4TEc81XXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.99,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efe04056435e674cde6bf82af2c6efa75066d2e12865f2965f0ae05f1a828b94
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a20441da6b85363f1ebc00024e87cd8e3b048ff015ad054e83713f5fcf8f994
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Nov 23 01:01:46 UTC 2022
2
+ Python: 3.10.8
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0
5
+ GPU Enabled: True
6
+ Numpy: 1.23.4
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.73489198158114, "std_reward": 25.593428764611595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T15:56:38.558085"}