CWhy commited on
Commit
01ebf6c
1 Parent(s): 816d8a6
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -243.93 +/- 20.82
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ad614440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ad6144d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ad614560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ad6145f0>", "_build": "<function ActorCriticPolicy._build at 0x7f86ad614680>", "forward": "<function ActorCriticPolicy.forward at 0x7f86ad614710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ad6147a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86ad614830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ad6148c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ad614950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ad6149e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f86ad65cb40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651678641.886043, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYGcbv6k7A/4uYNvpBM8770BfE7BmhZPQAAAAAAAAAAMzFpPHTftT/YEXQ+TF6XPSSHD7ySAqu8AAAAAAAAAAATcgO+weWTP56Fx75MdRq/zUT0vb6ZjL4AAAAAAAAAAJOODr6xEus9vxFMvWNorr/rAyq+btvcvQAAAAAAAAAAs19vPnRQmD9KihI/k6f9vrk2Bj1Njqw9AAAAAAAAAACwwNw+sptQP6mVtz4PT0G/pQHxPoUYsD4AAAAAAAAAABNBhb4Rhjg/clISv392X79p5AU+lJQ2PQAAAAAAAAAAU5akPp3FDz/eNgg/9NGPv8povD7A1dk+AAAAAAAAAABNet69e/N6Pz38k761/j6/k1ULvdLbNT0AAAAAAAAAAKPywT4tNdg+yqWwPjO1cb8B3/A+Ena1PgAAAAAAAAAAzaSHO1xnsj/iG5I9FsYbvpWJpLxlqzC9AAAAAAAAAACNP8e9BdBRP6POzb7fQ32/3DViP+dwvD4AAAAAAAAAANqv3r1C6Zw/qPXsvgmN5b4n5eA9jnYWOwAAAAAAAAAAACAIPGVhvj+QYcU97kbKPlVe7rwwq2G9AAAAAAAAAADmkS2+FhTHPt1ivr5YToi/2c7LPpj8qT0AAAAAAAAAAFYaVb5clrM/pOAUv78knr4/isC9LkEevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIEYIjza7VsCUhpRSlIwBbJRLWowBdJRHQE12Rradtl91fZQoaAZoCWgPQwiveOqRBkM4wJSGlFKUaBVLhmgWR0BNfCfg75mAdX2UKGgGaAloD0MId/aVB+kLUsCUhpRSlGgVSz5oFkdATX/rv9cbBHV9lChoBmgJaA9DCIY6rHDLdUzAlIaUUpRoFUtWaBZHQE2BBl+Vkc11fZQoaAZoCWgPQwgjS+ZY3kBgwJSGlFKUaBVLTWgWR0BNi0OmR/3GdX2UKGgGaAloD0MIUrXdBN+GV8CUhpRSlGgVS1xoFkdATY0IcBEKE3V9lChoBmgJaA9DCMakv5fCbFrAlIaUUpRoFUtPaBZHQE2PtG/etS11fZQoaAZoCWgPQwgIHt/etW5qwJSGlFKUaBVLgGgWR0BNkWJSBK+SdX2UKGgGaAloD0MI3+ALk6mCWcCUhpRSlGgVS1BoFkdATZuDHwPRRnV9lChoBmgJaA9DCIUHza579lnAlIaUUpRoFUtLaBZHQE2dLrX18LN1fZQoaAZoCWgPQwgD7KNTV4JawJSGlFKUaBVLRmgWR0BNniVKPGQ0dX2UKGgGaAloD0MIjCyZY/mHbsCUhpRSlGgVS2ZoFkdATadh/iHZb3V9lChoBmgJaA9DCDqvsUtUEmHAlIaUUpRoFUtfaBZHQE2orYoRZlp1fZQoaAZoCWgPQwgTDOcappV1wJSGlFKUaBVLjGgWR0BNqx/d69kCdX2UKGgGaAloD0MIpoEf1bAdVcCUhpRSlGgVS1VoFkdATa6EpRXOnnV9lChoBmgJaA9DCD8djxmo6FPAlIaUUpRoFUtNaBZHQE2vqGDcuap1fZQoaAZoCWgPQwgyWdx/pKd1wJSGlFKUaBVLXWgWR0BNr2lEZzgddX2UKGgGaAloD0MI++qqQC1lWsCUhpRSlGgVS0xoFkdATbG8f3evZHV9lChoBmgJaA9DCGXDmsqiACxAlIaUUpRoFUttaBZHQE2+YR/ViF11fZQoaAZoCWgPQwh06zU9qCdpwJSGlFKUaBVLaWgWR0BNxWki2UjcdX2UKGgGaAloD0MIBFWjVwMgW8CUhpRSlGgVS1doFkdATcn9LpRoAXV9lChoBmgJaA9DCF2Kq8q+XFvAlIaUUpRoFUtdaBZHQE3MvmozeoF1fZQoaAZoCWgPQwjVCP1MPVBhwJSGlFKUaBVLamgWR0BN0uTaCcwydX2UKGgGaAloD0MIOdTvwtZQX8CUhpRSlGgVS1RoFkdATdTIYFaB7XV9lChoBmgJaA9DCB/WG7XCW1DAlIaUUpRoFUtEaBZHQE3VvOyE+Pl1fZQoaAZoCWgPQwhivOZVnY9GwJSGlFKUaBVLPGgWR0BN14+KTB69dX2UKGgGaAloD0MIt5vgm6YoZsCUhpRSlGgVS3toFkdATd0/8l5WzXV9lChoBmgJaA9DCB6KAn0ihmDAlIaUUpRoFUteaBZHQE3dJ04iosJ1fZQoaAZoCWgPQwjCTrFqEOxXwJSGlFKUaBVLS2gWR0BN4Ot4iX6ZdX2UKGgGaAloD0MIHNE96xoFVsCUhpRSlGgVS1poFkdATeOPtD2JznV9lChoBmgJaA9DCAa4IFuWAlXAlIaUUpRoFUtkaBZHQE3tUR3/xUh1fZQoaAZoCWgPQwjLDvEP2xdowJSGlFKUaBVLf2gWR0BN77gKnei0dX2UKGgGaAloD0MIineAJy1oXMCUhpRSlGgVS3FoFkdATfomiQDFInV9lChoBmgJaA9DCIALsmX5tmTAlIaUUpRoFUtuaBZHQE36gvDgqEx1fZQoaAZoCWgPQwgyxofZS+ltwJSGlFKUaBVLVWgWR0BN/g5BC2MLdX2UKGgGaAloD0MIpDmy8sucQcCUhpRSlGgVS1JoFkdATgHAZbY9PnV9lChoBmgJaA9DCEijAidbiWfAlIaUUpRoFUtKaBZHQE4GqKgqVhV1fZQoaAZoCWgPQwhksrj/yJBWwJSGlFKUaBVLc2gWR0BOC8ghbGFSdX2UKGgGaAloD0MI3+ALk6kYU8CUhpRSlGgVSz9oFkdATg1lwtJ4B3V9lChoBmgJaA9DCNZSQNr/KGfAlIaUUpRoFUtcaBZHQE4Ubwz+FUR1fZQoaAZoCWgPQwg4SfPHtBBcwJSGlFKUaBVLbmgWR0BOF60QbuMNdX2UKGgGaAloD0MI5/9VR47CTcCUhpRSlGgVS0BoFkdAThmq3mV7hXV9lChoBmgJaA9DCCZXsfhNLVHAlIaUUpRoFUthaBZHQE4iV5a/yoZ1fZQoaAZoCWgPQwh06zU9KMVUwJSGlFKUaBVLd2gWR0BOI7VrhzeXdX2UKGgGaAloD0MIZaa0/pbnZsCUhpRSlGgVS3RoFkdATiXnSv1UVHV9lChoBmgJaA9DCGdGPxrOwWDAlIaUUpRoFUttaBZHQE4mxREWqLl1fZQoaAZoCWgPQwgFxCRcyJpcwJSGlFKUaBVLQWgWR0BOJ8m8dxQ0dX2UKGgGaAloD0MILCgMyjS7YcCUhpRSlGgVS29oFkdATihqZc9nsnV9lChoBmgJaA9DCGd79Ib7sV3AlIaUUpRoFUtQaBZHQE4xapxWDHx1fZQoaAZoCWgPQwjl8EknEipCwJSGlFKUaBVLR2gWR0BONpIUahpQdX2UKGgGaAloD0MImrZ/ZaVWVMCUhpRSlGgVS21oFkdATjn5zo2XLXV9lChoBmgJaA9DCNAqM6V1DWzAlIaUUpRoFUtiaBZHQE5BIMBp5/t1fZQoaAZoCWgPQwjDRIMUPAdBwJSGlFKUaBVLQmgWR0BOQ3dbgTAWdX2UKGgGaAloD0MIu5195UGWbsCUhpRSlGgVS1hoFkdATklB+nZTQ3V9lChoBmgJaA9DCA5KmGn711vAlIaUUpRoFUtbaBZHQE5Jv0h/y5J1fZQoaAZoCWgPQwjCa5c2nGNkwJSGlFKUaBVLaGgWR0BOWa8QI2OydX2UKGgGaAloD0MILbXeb7RWV8CUhpRSlGgVS1toFkdATmCIi1RceXV9lChoBmgJaA9DCHtP5bSnkkPAlIaUUpRoFUuMaBZHQE5gOWjXWe91fZQoaAZoCWgPQwh+NnLdlEZawJSGlFKUaBVLXGgWR0BOZCAc1fmcdX2UKGgGaAloD0MI44qLo/IeaMCUhpRSlGgVS11oFkdATmQqslsxf3V9lChoBmgJaA9DCKYMHNDSkFnAlIaUUpRoFUtwaBZHQE5krBj4Hop1fZQoaAZoCWgPQwhEhlW8Ef9qwJSGlFKUaBVLZ2gWR0BObFX7tRekdX2UKGgGaAloD0MITWn9LQGZW8CUhpRSlGgVS2JoFkdATnMRaouPFXV9lChoBmgJaA9DCIL917lpqFvAlIaUUpRoFUtXaBZHQE574Irvsqt1fZQoaAZoCWgPQwgAcVevohpswJSGlFKUaBVLiGgWR0BOfdnkDIRzdX2UKGgGaAloD0MIHAsKg7L7YsCUhpRSlGgVS2loFkdAToDoSteUp3V9lChoBmgJaA9DCBwj2SPUilPAlIaUUpRoFUtdaBZHQE6DUQ04zad1fZQoaAZoCWgPQwicMGE0KzdKwJSGlFKUaBVLjGgWR0BOiCyIHkcTdX2UKGgGaAloD0MI8GskCUIQYsCUhpRSlGgVS1loFkdATofMMZxaPnV9lChoBmgJaA9DCEW94NOcAE7AlIaUUpRoFUtEaBZHQE6J5IH1OCZ1fZQoaAZoCWgPQwg3wqIiTgp0wJSGlFKUaBVLfGgWR0BOjCIk7fYSdX2UKGgGaAloD0MIYMyWrIpUXsCUhpRSlGgVS0JoFkdATpm2y9mHxnV9lChoBmgJaA9DCCgn2lVIWF/AlIaUUpRoFUtTaBZHQE6cznA6+391fZQoaAZoCWgPQwiFmbZ/JfxxwJSGlFKUaBVLWmgWR0BOnaab4Ju3dX2UKGgGaAloD0MIlSnmIOg+XsCUhpRSlGgVS4BoFkdATqByhi9ZinV9lChoBmgJaA9DCCklBKvqVVnAlIaUUpRoFUtaaBZHQE6iFFDv3Jx1fZQoaAZoCWgPQwgHXFfMCOcyQJSGlFKUaBVLX2gWR0BOpLYwqRU4dX2UKGgGaAloD0MIUkSGVbwDWcCUhpRSlGgVS2xoFkdATqmvjfek6HV9lChoBmgJaA9DCJbLRuf8WkXAlIaUUpRoFUtLaBZHQE6uptJnQIF1fZQoaAZoCWgPQwiNDkjCvoJVwJSGlFKUaBVLRGgWR0BOtTy8SPELdX2UKGgGaAloD0MI9Kj4vyPgUcCUhpRSlGgVS05oFkdATrZ28qWkanV9lChoBmgJaA9DCEAUzJiCYVrAlIaUUpRoFUteaBZHQE69SYw7DEZ1fZQoaAZoCWgPQwgSF4BG6dxmwJSGlFKUaBVLdmgWR0BOw24mTkhidX2UKGgGaAloD0MIAkaXN4cRUMCUhpRSlGgVS1xoFkdATsQnBtUGV3V9lChoBmgJaA9DCHUDBd7JQVTAlIaUUpRoFUtEaBZHQE7HZ4fOlft1fZQoaAZoCWgPQwhJumbyzQJXwJSGlFKUaBVLQWgWR0BOyITfzjFRdX2UKGgGaAloD0MIgosVNVgEd8CUhpRSlGgVS3NoFkdATs5ZjhDPW3V9lChoBmgJaA9DCO1HisiwoVXAlIaUUpRoFUs4aBZHQE7Pisny/bl1fZQoaAZoCWgPQwh5dY4B2R1HwJSGlFKUaBVLQWgWR0BO0Dzyz5XVdX2UKGgGaAloD0MI3lZ6bTbqNsCUhpRSlGgVS3poFkdATthVfeDWb3V9lChoBmgJaA9DCDEJF/IIJVXAlIaUUpRoFUtAaBZHQE7Zollbu+h1fZQoaAZoCWgPQwgcl3FTAyBXwJSGlFKUaBVLgmgWR0BO4W/JvHcUdX2UKGgGaAloD0MIPpXTnpJCV8CUhpRSlGgVS2doFkdATuHtY0VJtnV9lChoBmgJaA9DCDikUYGTZGHAlIaUUpRoFUtlaBZHQE7kyZa3Zwp1fZQoaAZoCWgPQwg7G/LPDAJbwJSGlFKUaBVLTmgWR0BO6WYOUdJbdX2UKGgGaAloD0MICwqDMo38VcCUhpRSlGgVS0ZoFkdATus+s5n14HV9lChoBmgJaA9DCE4LXvQVyFbAlIaUUpRoFUtOaBZHQE717EYO2Ap1fZQoaAZoCWgPQwiY9s391VtbwJSGlFKUaBVLSGgWR0BO9tM495hSdX2UKGgGaAloD0MIqaPjamTnRMCUhpRSlGgVSz9oFkdATvgT238XN3V9lChoBmgJaA9DCH4CKEZWnnbAlIaUUpRoFUuJaBZHQE76LtNSIgx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-rc.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39d967cc5d449f3349c4067523f2fd761728b62cf16bab01fd027a42dce1ad72
3
+ size 143910
ppo-LunarLander-rc/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-rc/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ad614440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ad6144d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ad614560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ad6145f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f86ad614680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f86ad614710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ad6147a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f86ad614830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ad6148c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ad614950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ad6149e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f86ad65cb40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 65536,
46
+ "_total_timesteps": 50000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651678641.886043,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYGcbv6k7A/4uYNvpBM8770BfE7BmhZPQAAAAAAAAAAMzFpPHTftT/YEXQ+TF6XPSSHD7ySAqu8AAAAAAAAAAATcgO+weWTP56Fx75MdRq/zUT0vb6ZjL4AAAAAAAAAAJOODr6xEus9vxFMvWNorr/rAyq+btvcvQAAAAAAAAAAs19vPnRQmD9KihI/k6f9vrk2Bj1Njqw9AAAAAAAAAACwwNw+sptQP6mVtz4PT0G/pQHxPoUYsD4AAAAAAAAAABNBhb4Rhjg/clISv392X79p5AU+lJQ2PQAAAAAAAAAAU5akPp3FDz/eNgg/9NGPv8povD7A1dk+AAAAAAAAAABNet69e/N6Pz38k761/j6/k1ULvdLbNT0AAAAAAAAAAKPywT4tNdg+yqWwPjO1cb8B3/A+Ena1PgAAAAAAAAAAzaSHO1xnsj/iG5I9FsYbvpWJpLxlqzC9AAAAAAAAAACNP8e9BdBRP6POzb7fQ32/3DViP+dwvD4AAAAAAAAAANqv3r1C6Zw/qPXsvgmN5b4n5eA9jnYWOwAAAAAAAAAAACAIPGVhvj+QYcU97kbKPlVe7rwwq2G9AAAAAAAAAADmkS2+FhTHPt1ivr5YToi/2c7LPpj8qT0AAAAAAAAAAFYaVb5clrM/pOAUv78knr4/isC9LkEevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.3107200000000001,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIEYIjza7VsCUhpRSlIwBbJRLWowBdJRHQE12Rradtl91fZQoaAZoCWgPQwiveOqRBkM4wJSGlFKUaBVLhmgWR0BNfCfg75mAdX2UKGgGaAloD0MId/aVB+kLUsCUhpRSlGgVSz5oFkdATX/rv9cbBHV9lChoBmgJaA9DCIY6rHDLdUzAlIaUUpRoFUtWaBZHQE2BBl+Vkc11fZQoaAZoCWgPQwgjS+ZY3kBgwJSGlFKUaBVLTWgWR0BNi0OmR/3GdX2UKGgGaAloD0MIUrXdBN+GV8CUhpRSlGgVS1xoFkdATY0IcBEKE3V9lChoBmgJaA9DCMakv5fCbFrAlIaUUpRoFUtPaBZHQE2PtG/etS11fZQoaAZoCWgPQwgIHt/etW5qwJSGlFKUaBVLgGgWR0BNkWJSBK+SdX2UKGgGaAloD0MI3+ALk6mCWcCUhpRSlGgVS1BoFkdATZuDHwPRRnV9lChoBmgJaA9DCIUHza579lnAlIaUUpRoFUtLaBZHQE2dLrX18LN1fZQoaAZoCWgPQwgD7KNTV4JawJSGlFKUaBVLRmgWR0BNniVKPGQ0dX2UKGgGaAloD0MIjCyZY/mHbsCUhpRSlGgVS2ZoFkdATadh/iHZb3V9lChoBmgJaA9DCDqvsUtUEmHAlIaUUpRoFUtfaBZHQE2orYoRZlp1fZQoaAZoCWgPQwgTDOcappV1wJSGlFKUaBVLjGgWR0BNqx/d69kCdX2UKGgGaAloD0MIpoEf1bAdVcCUhpRSlGgVS1VoFkdATa6EpRXOnnV9lChoBmgJaA9DCD8djxmo6FPAlIaUUpRoFUtNaBZHQE2vqGDcuap1fZQoaAZoCWgPQwgyWdx/pKd1wJSGlFKUaBVLXWgWR0BNr2lEZzgddX2UKGgGaAloD0MI++qqQC1lWsCUhpRSlGgVS0xoFkdATbG8f3evZHV9lChoBmgJaA9DCGXDmsqiACxAlIaUUpRoFUttaBZHQE2+YR/ViF11fZQoaAZoCWgPQwh06zU9qCdpwJSGlFKUaBVLaWgWR0BNxWki2UjcdX2UKGgGaAloD0MIBFWjVwMgW8CUhpRSlGgVS1doFkdATcn9LpRoAXV9lChoBmgJaA9DCF2Kq8q+XFvAlIaUUpRoFUtdaBZHQE3MvmozeoF1fZQoaAZoCWgPQwjVCP1MPVBhwJSGlFKUaBVLamgWR0BN0uTaCcwydX2UKGgGaAloD0MIOdTvwtZQX8CUhpRSlGgVS1RoFkdATdTIYFaB7XV9lChoBmgJaA9DCB/WG7XCW1DAlIaUUpRoFUtEaBZHQE3VvOyE+Pl1fZQoaAZoCWgPQwhivOZVnY9GwJSGlFKUaBVLPGgWR0BN14+KTB69dX2UKGgGaAloD0MIt5vgm6YoZsCUhpRSlGgVS3toFkdATd0/8l5WzXV9lChoBmgJaA9DCB6KAn0ihmDAlIaUUpRoFUteaBZHQE3dJ04iosJ1fZQoaAZoCWgPQwjCTrFqEOxXwJSGlFKUaBVLS2gWR0BN4Ot4iX6ZdX2UKGgGaAloD0MIHNE96xoFVsCUhpRSlGgVS1poFkdATeOPtD2JznV9lChoBmgJaA9DCAa4IFuWAlXAlIaUUpRoFUtkaBZHQE3tUR3/xUh1fZQoaAZoCWgPQwjLDvEP2xdowJSGlFKUaBVLf2gWR0BN77gKnei0dX2UKGgGaAloD0MIineAJy1oXMCUhpRSlGgVS3FoFkdATfomiQDFInV9lChoBmgJaA9DCIALsmX5tmTAlIaUUpRoFUtuaBZHQE36gvDgqEx1fZQoaAZoCWgPQwgyxofZS+ltwJSGlFKUaBVLVWgWR0BN/g5BC2MLdX2UKGgGaAloD0MIpDmy8sucQcCUhpRSlGgVS1JoFkdATgHAZbY9PnV9lChoBmgJaA9DCEijAidbiWfAlIaUUpRoFUtKaBZHQE4GqKgqVhV1fZQoaAZoCWgPQwhksrj/yJBWwJSGlFKUaBVLc2gWR0BOC8ghbGFSdX2UKGgGaAloD0MI3+ALk6kYU8CUhpRSlGgVSz9oFkdATg1lwtJ4B3V9lChoBmgJaA9DCNZSQNr/KGfAlIaUUpRoFUtcaBZHQE4Ubwz+FUR1fZQoaAZoCWgPQwg4SfPHtBBcwJSGlFKUaBVLbmgWR0BOF60QbuMNdX2UKGgGaAloD0MI5/9VR47CTcCUhpRSlGgVS0BoFkdAThmq3mV7hXV9lChoBmgJaA9DCCZXsfhNLVHAlIaUUpRoFUthaBZHQE4iV5a/yoZ1fZQoaAZoCWgPQwh06zU9KMVUwJSGlFKUaBVLd2gWR0BOI7VrhzeXdX2UKGgGaAloD0MIZaa0/pbnZsCUhpRSlGgVS3RoFkdATiXnSv1UVHV9lChoBmgJaA9DCGdGPxrOwWDAlIaUUpRoFUttaBZHQE4mxREWqLl1fZQoaAZoCWgPQwgFxCRcyJpcwJSGlFKUaBVLQWgWR0BOJ8m8dxQ0dX2UKGgGaAloD0MILCgMyjS7YcCUhpRSlGgVS29oFkdATihqZc9nsnV9lChoBmgJaA9DCGd79Ib7sV3AlIaUUpRoFUtQaBZHQE4xapxWDHx1fZQoaAZoCWgPQwjl8EknEipCwJSGlFKUaBVLR2gWR0BONpIUahpQdX2UKGgGaAloD0MImrZ/ZaVWVMCUhpRSlGgVS21oFkdATjn5zo2XLXV9lChoBmgJaA9DCNAqM6V1DWzAlIaUUpRoFUtiaBZHQE5BIMBp5/t1fZQoaAZoCWgPQwjDRIMUPAdBwJSGlFKUaBVLQmgWR0BOQ3dbgTAWdX2UKGgGaAloD0MIu5195UGWbsCUhpRSlGgVS1hoFkdATklB+nZTQ3V9lChoBmgJaA9DCA5KmGn711vAlIaUUpRoFUtbaBZHQE5Jv0h/y5J1fZQoaAZoCWgPQwjCa5c2nGNkwJSGlFKUaBVLaGgWR0BOWa8QI2OydX2UKGgGaAloD0MILbXeb7RWV8CUhpRSlGgVS1toFkdATmCIi1RceXV9lChoBmgJaA9DCHtP5bSnkkPAlIaUUpRoFUuMaBZHQE5gOWjXWe91fZQoaAZoCWgPQwh+NnLdlEZawJSGlFKUaBVLXGgWR0BOZCAc1fmcdX2UKGgGaAloD0MI44qLo/IeaMCUhpRSlGgVS11oFkdATmQqslsxf3V9lChoBmgJaA9DCKYMHNDSkFnAlIaUUpRoFUtwaBZHQE5krBj4Hop1fZQoaAZoCWgPQwhEhlW8Ef9qwJSGlFKUaBVLZ2gWR0BObFX7tRekdX2UKGgGaAloD0MITWn9LQGZW8CUhpRSlGgVS2JoFkdATnMRaouPFXV9lChoBmgJaA9DCIL917lpqFvAlIaUUpRoFUtXaBZHQE574Irvsqt1fZQoaAZoCWgPQwgAcVevohpswJSGlFKUaBVLiGgWR0BOfdnkDIRzdX2UKGgGaAloD0MIHAsKg7L7YsCUhpRSlGgVS2loFkdAToDoSteUp3V9lChoBmgJaA9DCBwj2SPUilPAlIaUUpRoFUtdaBZHQE6DUQ04zad1fZQoaAZoCWgPQwicMGE0KzdKwJSGlFKUaBVLjGgWR0BOiCyIHkcTdX2UKGgGaAloD0MI8GskCUIQYsCUhpRSlGgVS1loFkdATofMMZxaPnV9lChoBmgJaA9DCEW94NOcAE7AlIaUUpRoFUtEaBZHQE6J5IH1OCZ1fZQoaAZoCWgPQwg3wqIiTgp0wJSGlFKUaBVLfGgWR0BOjCIk7fYSdX2UKGgGaAloD0MIYMyWrIpUXsCUhpRSlGgVS0JoFkdATpm2y9mHxnV9lChoBmgJaA9DCCgn2lVIWF/AlIaUUpRoFUtTaBZHQE6cznA6+391fZQoaAZoCWgPQwiFmbZ/JfxxwJSGlFKUaBVLWmgWR0BOnaab4Ju3dX2UKGgGaAloD0MIlSnmIOg+XsCUhpRSlGgVS4BoFkdATqByhi9ZinV9lChoBmgJaA9DCCklBKvqVVnAlIaUUpRoFUtaaBZHQE6iFFDv3Jx1fZQoaAZoCWgPQwgHXFfMCOcyQJSGlFKUaBVLX2gWR0BOpLYwqRU4dX2UKGgGaAloD0MIUkSGVbwDWcCUhpRSlGgVS2xoFkdATqmvjfek6HV9lChoBmgJaA9DCJbLRuf8WkXAlIaUUpRoFUtLaBZHQE6uptJnQIF1fZQoaAZoCWgPQwiNDkjCvoJVwJSGlFKUaBVLRGgWR0BOtTy8SPELdX2UKGgGaAloD0MI9Kj4vyPgUcCUhpRSlGgVS05oFkdATrZ28qWkanV9lChoBmgJaA9DCEAUzJiCYVrAlIaUUpRoFUteaBZHQE69SYw7DEZ1fZQoaAZoCWgPQwgSF4BG6dxmwJSGlFKUaBVLdmgWR0BOw24mTkhidX2UKGgGaAloD0MIAkaXN4cRUMCUhpRSlGgVS1xoFkdATsQnBtUGV3V9lChoBmgJaA9DCHUDBd7JQVTAlIaUUpRoFUtEaBZHQE7HZ4fOlft1fZQoaAZoCWgPQwhJumbyzQJXwJSGlFKUaBVLQWgWR0BOyITfzjFRdX2UKGgGaAloD0MIgosVNVgEd8CUhpRSlGgVS3NoFkdATs5ZjhDPW3V9lChoBmgJaA9DCO1HisiwoVXAlIaUUpRoFUs4aBZHQE7Pisny/bl1fZQoaAZoCWgPQwh5dY4B2R1HwJSGlFKUaBVLQWgWR0BO0Dzyz5XVdX2UKGgGaAloD0MI3lZ6bTbqNsCUhpRSlGgVS3poFkdATthVfeDWb3V9lChoBmgJaA9DCDEJF/IIJVXAlIaUUpRoFUtAaBZHQE7Zollbu+h1fZQoaAZoCWgPQwgcl3FTAyBXwJSGlFKUaBVLgmgWR0BO4W/JvHcUdX2UKGgGaAloD0MIPpXTnpJCV8CUhpRSlGgVS2doFkdATuHtY0VJtnV9lChoBmgJaA9DCDikUYGTZGHAlIaUUpRoFUtlaBZHQE7kyZa3Zwp1fZQoaAZoCWgPQwg7G/LPDAJbwJSGlFKUaBVLTmgWR0BO6WYOUdJbdX2UKGgGaAloD0MICwqDMo38VcCUhpRSlGgVS0ZoFkdATus+s5n14HV9lChoBmgJaA9DCE4LXvQVyFbAlIaUUpRoFUtOaBZHQE717EYO2Ap1fZQoaAZoCWgPQwiY9s391VtbwJSGlFKUaBVLSGgWR0BO9tM495hSdX2UKGgGaAloD0MIqaPjamTnRMCUhpRSlGgVSz9oFkdATvgT238XN3V9lChoBmgJaA9DCH4CKEZWnnbAlIaUUpRoFUuJaBZHQE76LtNSIgx1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 16,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-rc/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27f023e4e72178287649a164a29ff47d6703c4a77d4d8a9dddec46448fee4cc6
3
+ size 84829
ppo-LunarLander-rc/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a66f5ab0d9bf25cde229ceba05f10e97a03967179d4f7e66feb0877d8a2e94
3
+ size 43201
ppo-LunarLander-rc/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-rc/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d56a6b765667c393bd34bbe8db406b6e87dc6342536010fd2562767bcc69038
3
+ size 247073
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -243.9319556016795, "std_reward": 20.816588593272343, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T15:39:51.302289"}