init test
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-rc.zip +3 -0
- ppo-LunarLander-rc/_stable_baselines3_version +1 -0
- ppo-LunarLander-rc/data +94 -0
- ppo-LunarLander-rc/policy.optimizer.pth +3 -0
- ppo-LunarLander-rc/policy.pth +3 -0
- ppo-LunarLander-rc/pytorch_variables.pth +3 -0
- ppo-LunarLander-rc/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -243.93 +/- 20.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ad614440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ad6144d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ad614560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ad6145f0>", "_build": "<function ActorCriticPolicy._build at 0x7f86ad614680>", "forward": "<function ActorCriticPolicy.forward at 0x7f86ad614710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ad6147a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86ad614830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ad6148c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ad614950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ad6149e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f86ad65cb40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651678641.886043, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYGcbv6k7A/4uYNvpBM8770BfE7BmhZPQAAAAAAAAAAMzFpPHTftT/YEXQ+TF6XPSSHD7ySAqu8AAAAAAAAAAATcgO+weWTP56Fx75MdRq/zUT0vb6ZjL4AAAAAAAAAAJOODr6xEus9vxFMvWNorr/rAyq+btvcvQAAAAAAAAAAs19vPnRQmD9KihI/k6f9vrk2Bj1Njqw9AAAAAAAAAACwwNw+sptQP6mVtz4PT0G/pQHxPoUYsD4AAAAAAAAAABNBhb4Rhjg/clISv392X79p5AU+lJQ2PQAAAAAAAAAAU5akPp3FDz/eNgg/9NGPv8povD7A1dk+AAAAAAAAAABNet69e/N6Pz38k761/j6/k1ULvdLbNT0AAAAAAAAAAKPywT4tNdg+yqWwPjO1cb8B3/A+Ena1PgAAAAAAAAAAzaSHO1xnsj/iG5I9FsYbvpWJpLxlqzC9AAAAAAAAAACNP8e9BdBRP6POzb7fQ32/3DViP+dwvD4AAAAAAAAAANqv3r1C6Zw/qPXsvgmN5b4n5eA9jnYWOwAAAAAAAAAAACAIPGVhvj+QYcU97kbKPlVe7rwwq2G9AAAAAAAAAADmkS2+FhTHPt1ivr5YToi/2c7LPpj8qT0AAAAAAAAAAFYaVb5clrM/pOAUv78knr4/isC9LkEevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIEYIjza7VsCUhpRSlIwBbJRLWowBdJRHQE12Rradtl91fZQoaAZoCWgPQwiveOqRBkM4wJSGlFKUaBVLhmgWR0BNfCfg75mAdX2UKGgGaAloD0MId/aVB+kLUsCUhpRSlGgVSz5oFkdATX/rv9cbBHV9lChoBmgJaA9DCIY6rHDLdUzAlIaUUpRoFUtWaBZHQE2BBl+Vkc11fZQoaAZoCWgPQwgjS+ZY3kBgwJSGlFKUaBVLTWgWR0BNi0OmR/3GdX2UKGgGaAloD0MIUrXdBN+GV8CUhpRSlGgVS1xoFkdATY0IcBEKE3V9lChoBmgJaA9DCMakv5fCbFrAlIaUUpRoFUtPaBZHQE2PtG/etS11fZQoaAZoCWgPQwgIHt/etW5qwJSGlFKUaBVLgGgWR0BNkWJSBK+SdX2UKGgGaAloD0MI3+ALk6mCWcCUhpRSlGgVS1BoFkdATZuDHwPRRnV9lChoBmgJaA9DCIUHza579lnAlIaUUpRoFUtLaBZHQE2dLrX18LN1fZQoaAZoCWgPQwgD7KNTV4JawJSGlFKUaBVLRmgWR0BNniVKPGQ0dX2UKGgGaAloD0MIjCyZY/mHbsCUhpRSlGgVS2ZoFkdATadh/iHZb3V9lChoBmgJaA9DCDqvsUtUEmHAlIaUUpRoFUtfaBZHQE2orYoRZlp1fZQoaAZoCWgPQwgTDOcappV1wJSGlFKUaBVLjGgWR0BNqx/d69kCdX2UKGgGaAloD0MIpoEf1bAdVcCUhpRSlGgVS1VoFkdATa6EpRXOnnV9lChoBmgJaA9DCD8djxmo6FPAlIaUUpRoFUtNaBZHQE2vqGDcuap1fZQoaAZoCWgPQwgyWdx/pKd1wJSGlFKUaBVLXWgWR0BNr2lEZzgddX2UKGgGaAloD0MI++qqQC1lWsCUhpRSlGgVS0xoFkdATbG8f3evZHV9lChoBmgJaA9DCGXDmsqiACxAlIaUUpRoFUttaBZHQE2+YR/ViF11fZQoaAZoCWgPQwh06zU9qCdpwJSGlFKUaBVLaWgWR0BNxWki2UjcdX2UKGgGaAloD0MIBFWjVwMgW8CUhpRSlGgVS1doFkdATcn9LpRoAXV9lChoBmgJaA9DCF2Kq8q+XFvAlIaUUpRoFUtdaBZHQE3MvmozeoF1fZQoaAZoCWgPQwjVCP1MPVBhwJSGlFKUaBVLamgWR0BN0uTaCcwydX2UKGgGaAloD0MIOdTvwtZQX8CUhpRSlGgVS1RoFkdATdTIYFaB7XV9lChoBmgJaA9DCB/WG7XCW1DAlIaUUpRoFUtEaBZHQE3VvOyE+Pl1fZQoaAZoCWgPQwhivOZVnY9GwJSGlFKUaBVLPGgWR0BN14+KTB69dX2UKGgGaAloD0MIt5vgm6YoZsCUhpRSlGgVS3toFkdATd0/8l5WzXV9lChoBmgJaA9DCB6KAn0ihmDAlIaUUpRoFUteaBZHQE3dJ04iosJ1fZQoaAZoCWgPQwjCTrFqEOxXwJSGlFKUaBVLS2gWR0BN4Ot4iX6ZdX2UKGgGaAloD0MIHNE96xoFVsCUhpRSlGgVS1poFkdATeOPtD2JznV9lChoBmgJaA9DCAa4IFuWAlXAlIaUUpRoFUtkaBZHQE3tUR3/xUh1fZQoaAZoCWgPQwjLDvEP2xdowJSGlFKUaBVLf2gWR0BN77gKnei0dX2UKGgGaAloD0MIineAJy1oXMCUhpRSlGgVS3FoFkdATfomiQDFInV9lChoBmgJaA9DCIALsmX5tmTAlIaUUpRoFUtuaBZHQE36gvDgqEx1fZQoaAZoCWgPQwgyxofZS+ltwJSGlFKUaBVLVWgWR0BN/g5BC2MLdX2UKGgGaAloD0MIpDmy8sucQcCUhpRSlGgVS1JoFkdATgHAZbY9PnV9lChoBmgJaA9DCEijAidbiWfAlIaUUpRoFUtKaBZHQE4GqKgqVhV1fZQoaAZoCWgPQwhksrj/yJBWwJSGlFKUaBVLc2gWR0BOC8ghbGFSdX2UKGgGaAloD0MI3+ALk6kYU8CUhpRSlGgVSz9oFkdATg1lwtJ4B3V9lChoBmgJaA9DCNZSQNr/KGfAlIaUUpRoFUtcaBZHQE4Ubwz+FUR1fZQoaAZoCWgPQwg4SfPHtBBcwJSGlFKUaBVLbmgWR0BOF60QbuMNdX2UKGgGaAloD0MI5/9VR47CTcCUhpRSlGgVS0BoFkdAThmq3mV7hXV9lChoBmgJaA9DCCZXsfhNLVHAlIaUUpRoFUthaBZHQE4iV5a/yoZ1fZQoaAZoCWgPQwh06zU9KMVUwJSGlFKUaBVLd2gWR0BOI7VrhzeXdX2UKGgGaAloD0MIZaa0/pbnZsCUhpRSlGgVS3RoFkdATiXnSv1UVHV9lChoBmgJaA9DCGdGPxrOwWDAlIaUUpRoFUttaBZHQE4mxREWqLl1fZQoaAZoCWgPQwgFxCRcyJpcwJSGlFKUaBVLQWgWR0BOJ8m8dxQ0dX2UKGgGaAloD0MILCgMyjS7YcCUhpRSlGgVS29oFkdATihqZc9nsnV9lChoBmgJaA9DCGd79Ib7sV3AlIaUUpRoFUtQaBZHQE4xapxWDHx1fZQoaAZoCWgPQwjl8EknEipCwJSGlFKUaBVLR2gWR0BONpIUahpQdX2UKGgGaAloD0MImrZ/ZaVWVMCUhpRSlGgVS21oFkdATjn5zo2XLXV9lChoBmgJaA9DCNAqM6V1DWzAlIaUUpRoFUtiaBZHQE5BIMBp5/t1fZQoaAZoCWgPQwjDRIMUPAdBwJSGlFKUaBVLQmgWR0BOQ3dbgTAWdX2UKGgGaAloD0MIu5195UGWbsCUhpRSlGgVS1hoFkdATklB+nZTQ3V9lChoBmgJaA9DCA5KmGn711vAlIaUUpRoFUtbaBZHQE5Jv0h/y5J1fZQoaAZoCWgPQwjCa5c2nGNkwJSGlFKUaBVLaGgWR0BOWa8QI2OydX2UKGgGaAloD0MILbXeb7RWV8CUhpRSlGgVS1toFkdATmCIi1RceXV9lChoBmgJaA9DCHtP5bSnkkPAlIaUUpRoFUuMaBZHQE5gOWjXWe91fZQoaAZoCWgPQwh+NnLdlEZawJSGlFKUaBVLXGgWR0BOZCAc1fmcdX2UKGgGaAloD0MI44qLo/IeaMCUhpRSlGgVS11oFkdATmQqslsxf3V9lChoBmgJaA9DCKYMHNDSkFnAlIaUUpRoFUtwaBZHQE5krBj4Hop1fZQoaAZoCWgPQwhEhlW8Ef9qwJSGlFKUaBVLZ2gWR0BObFX7tRekdX2UKGgGaAloD0MITWn9LQGZW8CUhpRSlGgVS2JoFkdATnMRaouPFXV9lChoBmgJaA9DCIL917lpqFvAlIaUUpRoFUtXaBZHQE574Irvsqt1fZQoaAZoCWgPQwgAcVevohpswJSGlFKUaBVLiGgWR0BOfdnkDIRzdX2UKGgGaAloD0MIHAsKg7L7YsCUhpRSlGgVS2loFkdAToDoSteUp3V9lChoBmgJaA9DCBwj2SPUilPAlIaUUpRoFUtdaBZHQE6DUQ04zad1fZQoaAZoCWgPQwicMGE0KzdKwJSGlFKUaBVLjGgWR0BOiCyIHkcTdX2UKGgGaAloD0MI8GskCUIQYsCUhpRSlGgVS1loFkdATofMMZxaPnV9lChoBmgJaA9DCEW94NOcAE7AlIaUUpRoFUtEaBZHQE6J5IH1OCZ1fZQoaAZoCWgPQwg3wqIiTgp0wJSGlFKUaBVLfGgWR0BOjCIk7fYSdX2UKGgGaAloD0MIYMyWrIpUXsCUhpRSlGgVS0JoFkdATpm2y9mHxnV9lChoBmgJaA9DCCgn2lVIWF/AlIaUUpRoFUtTaBZHQE6cznA6+391fZQoaAZoCWgPQwiFmbZ/JfxxwJSGlFKUaBVLWmgWR0BOnaab4Ju3dX2UKGgGaAloD0MIlSnmIOg+XsCUhpRSlGgVS4BoFkdATqByhi9ZinV9lChoBmgJaA9DCCklBKvqVVnAlIaUUpRoFUtaaBZHQE6iFFDv3Jx1fZQoaAZoCWgPQwgHXFfMCOcyQJSGlFKUaBVLX2gWR0BOpLYwqRU4dX2UKGgGaAloD0MIUkSGVbwDWcCUhpRSlGgVS2xoFkdATqmvjfek6HV9lChoBmgJaA9DCJbLRuf8WkXAlIaUUpRoFUtLaBZHQE6uptJnQIF1fZQoaAZoCWgPQwiNDkjCvoJVwJSGlFKUaBVLRGgWR0BOtTy8SPELdX2UKGgGaAloD0MI9Kj4vyPgUcCUhpRSlGgVS05oFkdATrZ28qWkanV9lChoBmgJaA9DCEAUzJiCYVrAlIaUUpRoFUteaBZHQE69SYw7DEZ1fZQoaAZoCWgPQwgSF4BG6dxmwJSGlFKUaBVLdmgWR0BOw24mTkhidX2UKGgGaAloD0MIAkaXN4cRUMCUhpRSlGgVS1xoFkdATsQnBtUGV3V9lChoBmgJaA9DCHUDBd7JQVTAlIaUUpRoFUtEaBZHQE7HZ4fOlft1fZQoaAZoCWgPQwhJumbyzQJXwJSGlFKUaBVLQWgWR0BOyITfzjFRdX2UKGgGaAloD0MIgosVNVgEd8CUhpRSlGgVS3NoFkdATs5ZjhDPW3V9lChoBmgJaA9DCO1HisiwoVXAlIaUUpRoFUs4aBZHQE7Pisny/bl1fZQoaAZoCWgPQwh5dY4B2R1HwJSGlFKUaBVLQWgWR0BO0Dzyz5XVdX2UKGgGaAloD0MI3lZ6bTbqNsCUhpRSlGgVS3poFkdATthVfeDWb3V9lChoBmgJaA9DCDEJF/IIJVXAlIaUUpRoFUtAaBZHQE7Zollbu+h1fZQoaAZoCWgPQwgcl3FTAyBXwJSGlFKUaBVLgmgWR0BO4W/JvHcUdX2UKGgGaAloD0MIPpXTnpJCV8CUhpRSlGgVS2doFkdATuHtY0VJtnV9lChoBmgJaA9DCDikUYGTZGHAlIaUUpRoFUtlaBZHQE7kyZa3Zwp1fZQoaAZoCWgPQwg7G/LPDAJbwJSGlFKUaBVLTmgWR0BO6WYOUdJbdX2UKGgGaAloD0MICwqDMo38VcCUhpRSlGgVS0ZoFkdATus+s5n14HV9lChoBmgJaA9DCE4LXvQVyFbAlIaUUpRoFUtOaBZHQE717EYO2Ap1fZQoaAZoCWgPQwiY9s391VtbwJSGlFKUaBVLSGgWR0BO9tM495hSdX2UKGgGaAloD0MIqaPjamTnRMCUhpRSlGgVSz9oFkdATvgT238XN3V9lChoBmgJaA9DCH4CKEZWnnbAlIaUUpRoFUuJaBZHQE76LtNSIgx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-rc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39d967cc5d449f3349c4067523f2fd761728b62cf16bab01fd027a42dce1ad72
|
3 |
+
size 143910
|
ppo-LunarLander-rc/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-rc/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ad614440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ad6144d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ad614560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ad6145f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f86ad614680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f86ad614710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ad6147a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f86ad614830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ad6148c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ad614950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ad6149e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f86ad65cb40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 65536,
|
46 |
+
"_total_timesteps": 50000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651678641.886043,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYGcbv6k7A/4uYNvpBM8770BfE7BmhZPQAAAAAAAAAAMzFpPHTftT/YEXQ+TF6XPSSHD7ySAqu8AAAAAAAAAAATcgO+weWTP56Fx75MdRq/zUT0vb6ZjL4AAAAAAAAAAJOODr6xEus9vxFMvWNorr/rAyq+btvcvQAAAAAAAAAAs19vPnRQmD9KihI/k6f9vrk2Bj1Njqw9AAAAAAAAAACwwNw+sptQP6mVtz4PT0G/pQHxPoUYsD4AAAAAAAAAABNBhb4Rhjg/clISv392X79p5AU+lJQ2PQAAAAAAAAAAU5akPp3FDz/eNgg/9NGPv8povD7A1dk+AAAAAAAAAABNet69e/N6Pz38k761/j6/k1ULvdLbNT0AAAAAAAAAAKPywT4tNdg+yqWwPjO1cb8B3/A+Ena1PgAAAAAAAAAAzaSHO1xnsj/iG5I9FsYbvpWJpLxlqzC9AAAAAAAAAACNP8e9BdBRP6POzb7fQ32/3DViP+dwvD4AAAAAAAAAANqv3r1C6Zw/qPXsvgmN5b4n5eA9jnYWOwAAAAAAAAAAACAIPGVhvj+QYcU97kbKPlVe7rwwq2G9AAAAAAAAAADmkS2+FhTHPt1ivr5YToi/2c7LPpj8qT0AAAAAAAAAAFYaVb5clrM/pOAUv78knr4/isC9LkEevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIEYIjza7VsCUhpRSlIwBbJRLWowBdJRHQE12Rradtl91fZQoaAZoCWgPQwiveOqRBkM4wJSGlFKUaBVLhmgWR0BNfCfg75mAdX2UKGgGaAloD0MId/aVB+kLUsCUhpRSlGgVSz5oFkdATX/rv9cbBHV9lChoBmgJaA9DCIY6rHDLdUzAlIaUUpRoFUtWaBZHQE2BBl+Vkc11fZQoaAZoCWgPQwgjS+ZY3kBgwJSGlFKUaBVLTWgWR0BNi0OmR/3GdX2UKGgGaAloD0MIUrXdBN+GV8CUhpRSlGgVS1xoFkdATY0IcBEKE3V9lChoBmgJaA9DCMakv5fCbFrAlIaUUpRoFUtPaBZHQE2PtG/etS11fZQoaAZoCWgPQwgIHt/etW5qwJSGlFKUaBVLgGgWR0BNkWJSBK+SdX2UKGgGaAloD0MI3+ALk6mCWcCUhpRSlGgVS1BoFkdATZuDHwPRRnV9lChoBmgJaA9DCIUHza579lnAlIaUUpRoFUtLaBZHQE2dLrX18LN1fZQoaAZoCWgPQwgD7KNTV4JawJSGlFKUaBVLRmgWR0BNniVKPGQ0dX2UKGgGaAloD0MIjCyZY/mHbsCUhpRSlGgVS2ZoFkdATadh/iHZb3V9lChoBmgJaA9DCDqvsUtUEmHAlIaUUpRoFUtfaBZHQE2orYoRZlp1fZQoaAZoCWgPQwgTDOcappV1wJSGlFKUaBVLjGgWR0BNqx/d69kCdX2UKGgGaAloD0MIpoEf1bAdVcCUhpRSlGgVS1VoFkdATa6EpRXOnnV9lChoBmgJaA9DCD8djxmo6FPAlIaUUpRoFUtNaBZHQE2vqGDcuap1fZQoaAZoCWgPQwgyWdx/pKd1wJSGlFKUaBVLXWgWR0BNr2lEZzgddX2UKGgGaAloD0MI++qqQC1lWsCUhpRSlGgVS0xoFkdATbG8f3evZHV9lChoBmgJaA9DCGXDmsqiACxAlIaUUpRoFUttaBZHQE2+YR/ViF11fZQoaAZoCWgPQwh06zU9qCdpwJSGlFKUaBVLaWgWR0BNxWki2UjcdX2UKGgGaAloD0MIBFWjVwMgW8CUhpRSlGgVS1doFkdATcn9LpRoAXV9lChoBmgJaA9DCF2Kq8q+XFvAlIaUUpRoFUtdaBZHQE3MvmozeoF1fZQoaAZoCWgPQwjVCP1MPVBhwJSGlFKUaBVLamgWR0BN0uTaCcwydX2UKGgGaAloD0MIOdTvwtZQX8CUhpRSlGgVS1RoFkdATdTIYFaB7XV9lChoBmgJaA9DCB/WG7XCW1DAlIaUUpRoFUtEaBZHQE3VvOyE+Pl1fZQoaAZoCWgPQwhivOZVnY9GwJSGlFKUaBVLPGgWR0BN14+KTB69dX2UKGgGaAloD0MIt5vgm6YoZsCUhpRSlGgVS3toFkdATd0/8l5WzXV9lChoBmgJaA9DCB6KAn0ihmDAlIaUUpRoFUteaBZHQE3dJ04iosJ1fZQoaAZoCWgPQwjCTrFqEOxXwJSGlFKUaBVLS2gWR0BN4Ot4iX6ZdX2UKGgGaAloD0MIHNE96xoFVsCUhpRSlGgVS1poFkdATeOPtD2JznV9lChoBmgJaA9DCAa4IFuWAlXAlIaUUpRoFUtkaBZHQE3tUR3/xUh1fZQoaAZoCWgPQwjLDvEP2xdowJSGlFKUaBVLf2gWR0BN77gKnei0dX2UKGgGaAloD0MIineAJy1oXMCUhpRSlGgVS3FoFkdATfomiQDFInV9lChoBmgJaA9DCIALsmX5tmTAlIaUUpRoFUtuaBZHQE36gvDgqEx1fZQoaAZoCWgPQwgyxofZS+ltwJSGlFKUaBVLVWgWR0BN/g5BC2MLdX2UKGgGaAloD0MIpDmy8sucQcCUhpRSlGgVS1JoFkdATgHAZbY9PnV9lChoBmgJaA9DCEijAidbiWfAlIaUUpRoFUtKaBZHQE4GqKgqVhV1fZQoaAZoCWgPQwhksrj/yJBWwJSGlFKUaBVLc2gWR0BOC8ghbGFSdX2UKGgGaAloD0MI3+ALk6kYU8CUhpRSlGgVSz9oFkdATg1lwtJ4B3V9lChoBmgJaA9DCNZSQNr/KGfAlIaUUpRoFUtcaBZHQE4Ubwz+FUR1fZQoaAZoCWgPQwg4SfPHtBBcwJSGlFKUaBVLbmgWR0BOF60QbuMNdX2UKGgGaAloD0MI5/9VR47CTcCUhpRSlGgVS0BoFkdAThmq3mV7hXV9lChoBmgJaA9DCCZXsfhNLVHAlIaUUpRoFUthaBZHQE4iV5a/yoZ1fZQoaAZoCWgPQwh06zU9KMVUwJSGlFKUaBVLd2gWR0BOI7VrhzeXdX2UKGgGaAloD0MIZaa0/pbnZsCUhpRSlGgVS3RoFkdATiXnSv1UVHV9lChoBmgJaA9DCGdGPxrOwWDAlIaUUpRoFUttaBZHQE4mxREWqLl1fZQoaAZoCWgPQwgFxCRcyJpcwJSGlFKUaBVLQWgWR0BOJ8m8dxQ0dX2UKGgGaAloD0MILCgMyjS7YcCUhpRSlGgVS29oFkdATihqZc9nsnV9lChoBmgJaA9DCGd79Ib7sV3AlIaUUpRoFUtQaBZHQE4xapxWDHx1fZQoaAZoCWgPQwjl8EknEipCwJSGlFKUaBVLR2gWR0BONpIUahpQdX2UKGgGaAloD0MImrZ/ZaVWVMCUhpRSlGgVS21oFkdATjn5zo2XLXV9lChoBmgJaA9DCNAqM6V1DWzAlIaUUpRoFUtiaBZHQE5BIMBp5/t1fZQoaAZoCWgPQwjDRIMUPAdBwJSGlFKUaBVLQmgWR0BOQ3dbgTAWdX2UKGgGaAloD0MIu5195UGWbsCUhpRSlGgVS1hoFkdATklB+nZTQ3V9lChoBmgJaA9DCA5KmGn711vAlIaUUpRoFUtbaBZHQE5Jv0h/y5J1fZQoaAZoCWgPQwjCa5c2nGNkwJSGlFKUaBVLaGgWR0BOWa8QI2OydX2UKGgGaAloD0MILbXeb7RWV8CUhpRSlGgVS1toFkdATmCIi1RceXV9lChoBmgJaA9DCHtP5bSnkkPAlIaUUpRoFUuMaBZHQE5gOWjXWe91fZQoaAZoCWgPQwh+NnLdlEZawJSGlFKUaBVLXGgWR0BOZCAc1fmcdX2UKGgGaAloD0MI44qLo/IeaMCUhpRSlGgVS11oFkdATmQqslsxf3V9lChoBmgJaA9DCKYMHNDSkFnAlIaUUpRoFUtwaBZHQE5krBj4Hop1fZQoaAZoCWgPQwhEhlW8Ef9qwJSGlFKUaBVLZ2gWR0BObFX7tRekdX2UKGgGaAloD0MITWn9LQGZW8CUhpRSlGgVS2JoFkdATnMRaouPFXV9lChoBmgJaA9DCIL917lpqFvAlIaUUpRoFUtXaBZHQE574Irvsqt1fZQoaAZoCWgPQwgAcVevohpswJSGlFKUaBVLiGgWR0BOfdnkDIRzdX2UKGgGaAloD0MIHAsKg7L7YsCUhpRSlGgVS2loFkdAToDoSteUp3V9lChoBmgJaA9DCBwj2SPUilPAlIaUUpRoFUtdaBZHQE6DUQ04zad1fZQoaAZoCWgPQwicMGE0KzdKwJSGlFKUaBVLjGgWR0BOiCyIHkcTdX2UKGgGaAloD0MI8GskCUIQYsCUhpRSlGgVS1loFkdATofMMZxaPnV9lChoBmgJaA9DCEW94NOcAE7AlIaUUpRoFUtEaBZHQE6J5IH1OCZ1fZQoaAZoCWgPQwg3wqIiTgp0wJSGlFKUaBVLfGgWR0BOjCIk7fYSdX2UKGgGaAloD0MIYMyWrIpUXsCUhpRSlGgVS0JoFkdATpm2y9mHxnV9lChoBmgJaA9DCCgn2lVIWF/AlIaUUpRoFUtTaBZHQE6cznA6+391fZQoaAZoCWgPQwiFmbZ/JfxxwJSGlFKUaBVLWmgWR0BOnaab4Ju3dX2UKGgGaAloD0MIlSnmIOg+XsCUhpRSlGgVS4BoFkdATqByhi9ZinV9lChoBmgJaA9DCCklBKvqVVnAlIaUUpRoFUtaaBZHQE6iFFDv3Jx1fZQoaAZoCWgPQwgHXFfMCOcyQJSGlFKUaBVLX2gWR0BOpLYwqRU4dX2UKGgGaAloD0MIUkSGVbwDWcCUhpRSlGgVS2xoFkdATqmvjfek6HV9lChoBmgJaA9DCJbLRuf8WkXAlIaUUpRoFUtLaBZHQE6uptJnQIF1fZQoaAZoCWgPQwiNDkjCvoJVwJSGlFKUaBVLRGgWR0BOtTy8SPELdX2UKGgGaAloD0MI9Kj4vyPgUcCUhpRSlGgVS05oFkdATrZ28qWkanV9lChoBmgJaA9DCEAUzJiCYVrAlIaUUpRoFUteaBZHQE69SYw7DEZ1fZQoaAZoCWgPQwgSF4BG6dxmwJSGlFKUaBVLdmgWR0BOw24mTkhidX2UKGgGaAloD0MIAkaXN4cRUMCUhpRSlGgVS1xoFkdATsQnBtUGV3V9lChoBmgJaA9DCHUDBd7JQVTAlIaUUpRoFUtEaBZHQE7HZ4fOlft1fZQoaAZoCWgPQwhJumbyzQJXwJSGlFKUaBVLQWgWR0BOyITfzjFRdX2UKGgGaAloD0MIgosVNVgEd8CUhpRSlGgVS3NoFkdATs5ZjhDPW3V9lChoBmgJaA9DCO1HisiwoVXAlIaUUpRoFUs4aBZHQE7Pisny/bl1fZQoaAZoCWgPQwh5dY4B2R1HwJSGlFKUaBVLQWgWR0BO0Dzyz5XVdX2UKGgGaAloD0MI3lZ6bTbqNsCUhpRSlGgVS3poFkdATthVfeDWb3V9lChoBmgJaA9DCDEJF/IIJVXAlIaUUpRoFUtAaBZHQE7Zollbu+h1fZQoaAZoCWgPQwgcl3FTAyBXwJSGlFKUaBVLgmgWR0BO4W/JvHcUdX2UKGgGaAloD0MIPpXTnpJCV8CUhpRSlGgVS2doFkdATuHtY0VJtnV9lChoBmgJaA9DCDikUYGTZGHAlIaUUpRoFUtlaBZHQE7kyZa3Zwp1fZQoaAZoCWgPQwg7G/LPDAJbwJSGlFKUaBVLTmgWR0BO6WYOUdJbdX2UKGgGaAloD0MICwqDMo38VcCUhpRSlGgVS0ZoFkdATus+s5n14HV9lChoBmgJaA9DCE4LXvQVyFbAlIaUUpRoFUtOaBZHQE717EYO2Ap1fZQoaAZoCWgPQwiY9s391VtbwJSGlFKUaBVLSGgWR0BO9tM495hSdX2UKGgGaAloD0MIqaPjamTnRMCUhpRSlGgVSz9oFkdATvgT238XN3V9lChoBmgJaA9DCH4CKEZWnnbAlIaUUpRoFUuJaBZHQE76LtNSIgx1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 16,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-rc/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27f023e4e72178287649a164a29ff47d6703c4a77d4d8a9dddec46448fee4cc6
|
3 |
+
size 84829
|
ppo-LunarLander-rc/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25a66f5ab0d9bf25cde229ceba05f10e97a03967179d4f7e66feb0877d8a2e94
|
3 |
+
size 43201
|
ppo-LunarLander-rc/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-rc/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d56a6b765667c393bd34bbe8db406b6e87dc6342536010fd2562767bcc69038
|
3 |
+
size 247073
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -243.9319556016795, "std_reward": 20.816588593272343, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T15:39:51.302289"}
|