CWhy commited on
Commit
71302e4
1 Parent(s): 200a867
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 283.05 +/- 17.02
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 285.24 +/- 16.44
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f322edd9e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f322edd9ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f322edd9f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f322eddd040>", "_build": "<function ActorCriticPolicy._build at 0x7f322eddd0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f322eddd160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f322eddd1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f322eddd280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f322eddd310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f322eddd3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f322eddd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f322edda1b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVagAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZRLIGF1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651724725.1190345, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAGaasDsheKi8+llSOw4AIT2hGsK9bQCwOwAAgD8AAIA/WiG9PR6ioT8uY80+HD8Uv11yCj55yYI+AAAAAAAAAAAAiDS8wz0Wuq0SWzzdfbA8IK01O8WUmD0AAIA/AACAP0rxcL6apPQ+ujFfPjcpJr/3Ff2+ULR+PgAAAAAAAAAA3oeQvhh0Oz+S1Bo+yqs0v7b7+b7TxHI+AAAAAAAAAABNBfO9xi2qP/J4jL77Qxu/YFx5vulCOr4AAAAAAAAAAGZy9zt2NjK8xfXsPSuhIzzk6gW90/oBvgAAgD8AAIA/TeYgPUjfiboauEKzFaq0r5nHtzpRecczAACAPwAAgD+asIA+D6oqP9/vhL5jyh2/jEilPu/zu74AAAAAAAAAAGaflDzfo7Y/N3KBPg0KszxAwYK8skIuvAAAAAAAAAAAAPqmPK7Dhrpuvwey35qEsGnNKbtbfBwzAACAPwAAgD+aYaU7z2AGvCsYTDuXx9g7R+dVPfI5wLwAAIA/AACAP81kgTvheJC62j1ctZVd9K9gHAi5gVOKNAAAgD8AAIA/AOCYPLy2sz/vKSA//6wDvshalry+ZOO9AAAAAAAAAACzX+E9GR2VPwyBrD57PDu/XBpePibgmD4AAAAAAAAAAACD8zyhnau87icLvtmaoTsjMV89SsYPtwAAgD8AAIA/TQtkPfqovD/GqCs/Eb+DPkh4XLzOgZo9AAAAAAAAAAAAUAk8ZLaMP5bECz0Cl2i/hjI1PPYtwzwAAAAAAAAAAM22p7wU8Iy6dWotNOZ7GTCruK06lzicswAAgD8AAIA/7VBSvi2KPD9wiwU+OSMxv09ts74mriY+AAAAAAAAAACaDMk8cXBIu66KiLsQY4g8L8qePI0ba70AAIA/AACAP/OMKj6ogwM/eBW2vgpjHL8kBUg+VM2uvgAAAAAAAAAAg9LbPvQZ173WCIA8vG6kPEfEub2ppTs8AACAPwAAgD8zUPa9Rf0vPyLyCjxv7jG/U32Tvnk0rjwAAAAAAAAAAGbGFTxiULU/+0OsPfrLHr7vNoK9oqQWvgAAAAAAAAAAc6vKvVqjND5n2Lw+D9L3vkKNFbyaKa8+AAAAAAAAAACahjA9SKH6uvFWOryMTJQ8DBAMPKMTgL0AAIA/AACAPzMdY7yc8a0+yy5UPHU5Kr+coCq8P7SIPAAAAAAAAAAA7dgFPhSPdT8Ovqw+RkZAvyTFlT6GwqY+AAAAAAAAAABt+T4+W+y4vAjMgrjERxa4s4smvhpggTcAAIA/AACAPzM3gj3WOTo9ETbCvsVX1L5m43S+Y2qBvgAAAAAAAAAAM6cRvXEBDLu7fVQ8dAaNPJm3p7sLOnQ9AACAPwAAgD8zn6U7hRXeu8QauT15DD492ueivA0bS7sAAIA/AACAPzNrvTxPPkc9GvaivuzEyr6whcu+IMdSvgAAAAAAAAAA5vMXPQRBrD8xHTo/S7Uhv3vHvby+u1W8AAAAAAAAAADNQyM+V8ElP2E1sbzFpC+/cU7BPtmxEL4AAAAAAAAAAJpPdTyPtCc9dGO/vQyGzb4Gdki8OVqqvQAAAAAAAAAAZkuYPIPTaLwShwe+Zo2JPWZWjz1es2M8AACAPwAAgD8zx5o8ZeDHPqqi0Dqr0Ey/6j5vPejhgrwAAAAAAAAAAGZm5DpcrS68xFu5OwBnMD0aXww9GyQIuwAAgD8AAIA/My+SO6RFXLsIQIm9ye2sPDQdQjtaE9g6AACAPwAAgD8TbU0+UkQZP6tUqL6MtTe/R4dmPhcMlL4AAAAAAAAAAOYPMD4YvU8/OOJDPueSPL/09eE+ZAO9PAAAAAAAAAAAzSKyvRvwnj2TSKk+4hy+vmX9CD79vHM+AAAAAAAAAABmaDi8Uququ/YLB7zP/Ps7RWoHvShT4zwAAIA/AACAP2Y2xjrEoYY+C+SNPa+yHb+PkSM97LWHOwAAAAAAAAAAJhmCPtcLYz/j8Jg9yrk4vyynFT9yFzm+AAAAAAAAAACaFqc82B+XP16xRT1OsD6/7ZvcvC2GuD0AAAAAAAAAAM0sDDt4o7Q/AtZdPuvwZzx3/CG7Hv9IvQAAAAAAAAAAM690vdFsgD3Kc8M+t5yPvoXAIj57l98+AAAAAAAAAAANrBa+YamZPqYdwz7dERu//vSZvco0kj4AAAAAAAAAAOYsFz0PBzc9hUT6vGl6pb48ydc9UnbWPAAAAAAAAAAADcDvvZpQjT/jC/6+9UdHv8HZML5uKLK+AAAAAAAAAAATaB6+YjLtPj4AhT4/Nhu/lxJ3vlicgD4AAAAAAAAAAKbLqz0oKJ0/3idTPjqHKr+SjW097MiBPgAAAAAAAAAAABnxvHv7tz8byfS+7vUEPj3lwTyIME08AAAAAAAAAAAzgw87cdY2uyynnL3VqJE8TiZhPI5Zer0AAIA/AACAPxplfz3pzl89qn6Fvgq7s75Kwbc7c8RQvgAAAAAAAAAAzcgIvciajju2v6g+67kyvqyPEz592FS/AAAAAAAAgD8zMyc74fCQulMu9TNVJbkvxTj2ubpSqLMAAIA/AACAP5PeJj5ba4U/rbCxPtEFKb80y+g+c2KRPgAAAAAAAAAAmhn0PFUkCz6eGjq9zjQKvwyAZT3P/w69AAAAAAAAAAAAuJ28T8AIvLnrBjw+WfM78xdgPdPO2LwAAIA/AACAP5pYrbzhLoy6W7TrMzNqKa83hwc7fg2mswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsfz5tqDHc0CUhpRSlIwBbJRLmowBdJRHQKoNpyH2ys11fZQoaAZoCWgPQwj8cma7QvhwQJSGlFKUaBVLi2gWR0CqDdakqMFVdX2UKGgGaAloD0MILPUsCOXRSUCUhpRSlGgVS21oFkdAqg3WOCGvfXV9lChoBmgJaA9DCMTOFDpv2nFAlIaUUpRoFUu1aBZHQKoN5DE3sHB1fZQoaAZoCWgPQwhENSVZh+pwQJSGlFKUaBVLqWgWR0CqDeMwco6TdX2UKGgGaAloD0MI1o7iHPXOcUCUhpRSlGgVS5JoFkdAqg3ywt8NQXV9lChoBmgJaA9DCJV9VwQ/UXJAlIaUUpRoFUunaBZHQKoN8p1ie/Z1fZQoaAZoCWgPQwjdtBmnoQlyQJSGlFKUaBVLwGgWR0CqDf/4IrvtdX2UKGgGaAloD0MIn1c89YjZcUCUhpRSlGgVS6RoFkdAqg4HYe1a4nV9lChoBmgJaA9DCMhCdAic93BAlIaUUpRoFUu4aBZHQKoOB1mrbQF1fZQoaAZoCWgPQwjiW1g3XqRxQJSGlFKUaBVLpmgWR0CqDgdB0ITodX2UKGgGaAloD0MIlzszwTBzcUCUhpRSlGgVS6hoFkdAqg4TfDUExXV9lChoBmgJaA9DCHL75ZOVKHNAlIaUUpRoFUu8aBZHQKoOHzzVc2R1fZQoaAZoCWgPQwieQUP/xIpxQJSGlFKUaBVLr2gWR0CqDmu1OTJRdX2UKGgGaAloD0MIliL5SiBIckCUhpRSlGgVS5FoFkdAqg6OVHFxXHV9lChoBmgJaA9DCO8dNSaEmHJAlIaUUpRoFUuhaBZHQKoOrzDGcWl1fZQoaAZoCWgPQwg/jubICitzQJSGlFKUaBVLzGgWR0CqDrZbpu/DdX2UKGgGaAloD0MIjuiedY3OckCUhpRSlGgVS65oFkdAqg7/QWvbGnV9lChoBmgJaA9DCNgN2xalyXBAlIaUUpRoFUu3aBZHQKoPIrbQC0Z1fZQoaAZoCWgPQwjGpSpt8YNzQJSGlFKUaBVLsWgWR0CqDzIddVvNdX2UKGgGaAloD0MI106UhMRPcUCUhpRSlGgVS8VoFkdAqg9BSNwR5HV9lChoBmgJaA9DCOOo3ERtD3JAlIaUUpRoFUu7aBZHQKoPQYxcmjV1fZQoaAZoCWgPQwjgL2ZLVq9yQJSGlFKUaBVLsGgWR0CqD0ce8wpOdX2UKGgGaAloD0MI1LZhFESJckCUhpRSlGgVS8BoFkdAqg9rXvphW3V9lChoBmgJaA9DCOLplbLMjnJAlIaUUpRoFUucaBZHQKoPa19fCyh1fZQoaAZoCWgPQwhr1hnf1zxwQJSGlFKUaBVLk2gWR0CqD3C/47A+dX2UKGgGaAloD0MIoBfuXJjHb0CUhpRSlGgVS59oFkdAqg+AJC0F83V9lChoBmgJaA9DCIaNsn6zBXJAlIaUUpRoFUvEaBZHQKoPk1TBInV1fZQoaAZoCWgPQwhMa9PYXgNxQJSGlFKUaBVLmmgWR0CqD6iY1He8dX2UKGgGaAloD0MIkBX8NgQic0CUhpRSlGgVS7FoFkdAqg/R4W1twnV9lChoBmgJaA9DCHoYWp2cGXJAlIaUUpRoFUupaBZHQKoP9PuXu3N1fZQoaAZoCWgPQwiYaJCC50FxQJSGlFKUaBVLrGgWR0CqD/vHktEodX2UKGgGaAloD0MIoik7/eAtckCUhpRSlGgVS4toFkdAqg/7tPYWcnV9lChoBmgJaA9DCF1vm6mQxnFAlIaUUpRoFUucaBZHQKoP+uOCGvh1fZQoaAZoCWgPQwi/LO3UnFFyQJSGlFKUaBVLoGgWR0CqEAkcjqwAdX2UKGgGaAloD0MIEeLK2TtCckCUhpRSlGgVS9BoFkdAqhAPS6UaAHV9lChoBmgJaA9DCJmEC3kE1XBAlIaUUpRoFUuuaBZHQKoQD1VYISl1fZQoaAZoCWgPQwhm9Q63A39zQJSGlFKUaBVLq2gWR0CqED9Cu2ZzdX2UKGgGaAloD0MIizOGOUGTcUCUhpRSlGgVS51oFkdAqhBMH8jzI3V9lChoBmgJaA9DCGK/J9ZpFXBAlIaUUpRoFUuNaBZHQKoQbIsAeaN1fZQoaAZoCWgPQwj2YignWphyQJSGlFKUaBVLrGgWR0CqEHV4HHFQdX2UKGgGaAloD0MIpOAp5IqUcECUhpRSlGgVS6ZoFkdAqhCJ33YcvXV9lChoBmgJaA9DCDze5Lco+3BAlIaUUpRoFUu/aBZHQKoQmHuZ1FJ1fZQoaAZoCWgPQwjdW5GYoBtyQJSGlFKUaBVLtWgWR0CqEJ8oQWepdX2UKGgGaAloD0MIP+PCgZDycUCUhpRSlGgVS35oFkdAqhCdy7wrlXV9lChoBmgJaA9DCFgdOdKZXXFAlIaUUpRoFUuvaBZHQKoQug/Tspp1fZQoaAZoCWgPQwj43XTLDgRyQJSGlFKUaBVLn2gWR0CqEM6RyOrAdX2UKGgGaAloD0MI5E1+i040c0CUhpRSlGgVS85oFkdAqhDV6mfoR3V9lChoBmgJaA9DCA8r3PIROnRAlIaUUpRoFUvMaBZHQKoQ6oJiRW91fZQoaAZoCWgPQwgZr3lV55hzQJSGlFKUaBVLq2gWR0CqEP3bmEGrdX2UKGgGaAloD0MIxY7GoT6EcECUhpRSlGgVS6JoFkdAqhEn0TURWnV9lChoBmgJaA9DCMFwrmGGCHJAlIaUUpRoFUuoaBZHQKoRTJQLux91fZQoaAZoCWgPQwgcX3tmiVlzQJSGlFKUaBVLyWgWR0CqEUuwxFiKdX2UKGgGaAloD0MIr+3tlmRtckCUhpRSlGgVS5hoFkdAqhGzZ13dK3V9lChoBmgJaA9DCOoj8Idf5XFAlIaUUpRoFUu6aBZHQKoRs3o9s8B1fZQoaAZoCWgPQwjJ5xVPvbdyQJSGlFKUaBVLpGgWR0CqEbn0btJGdX2UKGgGaAloD0MIwck2cAc+ckCUhpRSlGgVS7ZoFkdAqhHJLZi/f3V9lChoBmgJaA9DCPp+arz0PnJAlIaUUpRoFUuuaBZHQKoRyQd0aIh1fZQoaAZoCWgPQwg0oUliiSNxQJSGlFKUaBVLk2gWR0CqEc/kvK2bdX2UKGgGaAloD0MIkKSkh+E3c0CUhpRSlGgVS7NoFkdAqhHX863iJnV9lChoBmgJaA9DCJcA/FOqQnJAlIaUUpRoFUuVaBZHQKoSDJGvwE11fZQoaAZoCWgPQwhTIoleRsF0QJSGlFKUaBVLsmgWR0CqEiKPGQ0XdX2UKGgGaAloD0MImZzaGWYVc0CUhpRSlGgVS5poFkdAqhIiouPFN3V9lChoBmgJaA9DCJ4/bVRnQXNAlIaUUpRoFUu2aBZHQKoSRBrvb491fZQoaAZoCWgPQwiW6CyzCF9zQJSGlFKUaBVLpGgWR0CqEkQtrbg1dX2UKGgGaAloD0MI7IhDNlAcckCUhpRSlGgVS6VoFkdAqhJa5CngpHV9lChoBmgJaA9DCNNmnIZoxXNAlIaUUpRoFUvBaBZHQKoSbo24usd1fZQoaAZoCWgPQwhY5q26TvByQJSGlFKUaBVLqmgWR0CqEotp22XtdX2UKGgGaAloD0MITGvT2B4KcECUhpRSlGgVS7VoFkdAqhKul0o0AXV9lChoBmgJaA9DCMcTQZyHD3NAlIaUUpRoFUvBaBZHQKoSrZg5R0l1fZQoaAZoCWgPQwgqG9ZUlkhyQJSGlFKUaBVLlmgWR0CqEryg5BC2dX2UKGgGaAloD0MI5h4SvvdyckCUhpRSlGgVS7hoFkdAqhLDO/tY0XV9lChoBmgJaA9DCN50yw5x2HBAlIaUUpRoFUu1aBZHQKoSyq0+kgx1fZQoaAZoCWgPQwgPJzCdloVxQJSGlFKUaBVLjmgWR0CqEtdRrJr+dX2UKGgGaAloD0MIqYO8HsxIckCUhpRSlGgVS7hoFkdAqhLz6Hj6vnV9lChoBmgJaA9DCHzw2qWNunRAlIaUUpRoFUu1aBZHQKoS+PEKmbd1fZQoaAZoCWgPQwire2RzlShxQJSGlFKUaBVLkWgWR0CqEyrXcxj8dX2UKGgGaAloD0MICFkWTPwXTkCUhpRSlGgVS3RoFkdAqhMwOUdJa3V9lChoBmgJaA9DCH4CKEZWHHNAlIaUUpRoFUvbaBZHQKoTP1Oj7AN1fZQoaAZoCWgPQwgbYrzmVfZvQJSGlFKUaBVLqWgWR0CqE0Z0CA+ZdX2UKGgGaAloD0MI8rImFjiocECUhpRSlGgVS7ZoFkdAqhNS+Yc/+3V9lChoBmgJaA9DCO54k98iuHBAlIaUUpRoFUufaBZHQKoTfK/VRUF1fZQoaAZoCWgPQwgknBa86FJvQJSGlFKUaBVLoWgWR0CqE5jklu3udX2UKGgGaAloD0MItcAeEym4cECUhpRSlGgVS5hoFkdAqhPBSR8tw3V9lChoBmgJaA9DCL5KPnbXZHJAlIaUUpRoFUuJaBZHQKoT86T4cm11fZQoaAZoCWgPQwgFpz6QfKhyQJSGlFKUaBVLs2gWR0CqE/m2b5M2dX2UKGgGaAloD0MIrp6T3vd5c0CUhpRSlGgVS7VoFkdAqhQrw6QvH3V9lChoBmgJaA9DCNukorG2anNAlIaUUpRoFUuvaBZHQKoUK9zOopB1fZQoaAZoCWgPQwgGvqJbL01wQJSGlFKUaBVLpmgWR0CqFFHoHLRsdX2UKGgGaAloD0MIgCctXBbxckCUhpRSlGgVS7VoFkdAqhRSXF98Z3V9lChoBmgJaA9DCAjnU8dqh3BAlIaUUpRoFUulaBZHQKoUdwuM+/x1fZQoaAZoCWgPQwhSnQ5kPdZzQJSGlFKUaBVL22gWR0CqFH+B6KLsdX2UKGgGaAloD0MIhpM0f0wIckCUhpRSlGgVS6doFkdAqhSFycTakHV9lChoBmgJaA9DCMl06PT8F3FAlIaUUpRoFUvCaBZHQKoUsqAjIJZ1fZQoaAZoCWgPQwjovTEEQDJzQJSGlFKUaBVLxWgWR0CqFN43m3fAdX2UKGgGaAloD0MICcbBpaPNc0CUhpRSlGgVS7VoFkdAqhTmZG8VYnV9lChoBmgJaA9DCCygUE9foHJAlIaUUpRoFUvEaBZHQKoU7OKwY+B1fZQoaAZoCWgPQwhVTKWf8MdyQJSGlFKUaBVLtGgWR0CqFPWoWHk+dX2UKGgGaAloD0MIobskzoo9cECUhpRSlGgVS5hoFkdAqhUD74zrNXV9lChoBmgJaA9DCOcBLPJrD3JAlIaUUpRoFUu3aBZHQKoVEaOPvKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ce0f6ae50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ce0f6aee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ce0f6af70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ce0f6e040>", "_build": "<function ActorCriticPolicy._build at 0x7f6ce0f6e0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6ce0f6e160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ce0f6e1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6ce0f6e280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ce0f6e310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ce0f6e3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ce0f6e430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6ce0f6b1b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [64, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 128, "num_timesteps": 20054016, "_total_timesteps": 20000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651728713.0254502, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAACZVnz3ONfs9ouCYvI5Mub4UfhM+E2rIPQAAAAAAAAAAM9+Mu7Ylsj/6FFi++3LgvsZ/PDtWw9c7AAAAAAAAAACAjRk9rr2VusvzcD30xSWzqaLGujWGT7MAAIA/AACAPwC6hTyFU+K7oAMbvvRPIrw9AA08auEyvgAAgD8AAIA/5poePR88+rtHxjG9vxlNPcOROj01M0W8AACAPwAAgD+6NQQ+nSGCPg4Lrr4+RDa/+nqEPaqKbr4AAAAAAAAAALP2dD3D8VK68mhnuhWe17VVzL068jOGOQAAgD8AAAAAZlZvPHd3sj9Qtk8+ak8+vte7TLyhVqC7AAAAAAAAAAAAPoc80h3Bu/4A1L291JI9o5MyOzIDVDsAAIA/AACAPwAShzyPHl66GtJwPd/fDTnYBlc7YbcKOAAAgD8AAIA/ZmbsunFyc7szoB48Cy+NPMeBn7yWKnI9AACAPwAAgD+aEwU8wxV6upbjQbQmdJavyOkZu9AosTMAAIA/AACAPwAnA73UFDM/1bqCvPEde7/1QqO9en0JPQAAAAAAAAAAzShAPjEFiD8FNaY+aY4Wv2BS5z5qPI0+AAAAAAAAAACaoRc8uNbAuU+SnLauxS2y35S/OoaGuzUAAIA/AACAP2A8Hr5qo/I+a+zzPakiMb9ROqa+JtvQPQAAAAAAAAAAgPQxPRyycry2IAC+kRYAvFTQVTtA1Ay+AACAPwAAgD8AceE8Y+FJPVC1EL4ZW8S+JiUCPhb1J7sAAAAAAAAAALNZEj7IonQ/rgK8PtaPLb9g+J8+WgilPgAAAAAAAAAAZjD6vEGSpLx2+rQ+myiSu35Yi72hQY+9AACAPwAAgD/NKu48klqsP/7zjT7dw8++RcTwu07jLT0AAAAAAAAAAJNdNL5f4Tg/X28dPs7ZV7/RZrK+scIXPgAAAAAAAAAADVP5veEAEj9SpfU9DrBav/fvY76LIf89AAAAAAAAAAAAmJ27e19+P7isv7zLF2q/jy1BvfDDnT0AAAAAAAAAAJqiw7w20rI/lwI1vvnlSb4xeOS8XgsBvgAAAAAAAAAAZia/O9DHtD83QRc/T++BPbpE3bu1Cwm+AAAAAAAAAADmFks9H+Pau4OWbb4iKAM932VMPSj+170AAIA/AACAP7vDg742gXE/gtM0vjtTDr/wSRq/otGuvQAAAAAAAAAANaSNviHHPj/tb2Y9kZo7v8kMBL+ukW8+AAAAAAAAAAC21VW+F8pHPxoq07u9Y1O/cqzUvsYOaj0AAAAAAAAAAOa1YD5srBI/y7invnE6Q78GE8s+vu20vgAAAAAAAAAAzSY6vGhAqz+2WDG+f3Qbv08+MbzX3r+9AAAAAAAAAABmkBc9X6kfPk0Asr1U7AO/sW7fu5bH+7wAAAAAAAAAAJqHMz68wIY/1oyzPt3NHL/GftU+4yGVPgAAAAAAAAAAk9FUPkYovz7zK9y+X5g4v1Jblz7u1Ny+AAAAAAAAAABmZ+M8EUqmPzdKnj6DCje/+jGvPB35Rj4AAAAAAAAAAG23Oj5w650+F3CXvmRIKL+PozY+Mj5mvgAAAAAAAAAAACPGPIQFoT+KUVw+54dMv/bAGz31dCs+AAAAAAAAAAAAS4o9s68aP9FRsD2FuEe/T9D5PR1sK70AAAAAAAAAAM1Yjbxb9Uk/7tpEPYVqgb/OG6O9EyQDPgAAAAAAAAAAmhbpvCayej9+P8+9vgSDv21pU70hq8Q6AAAAAAAAAABmZYI8HzT6PB447rz7hZG+3gLIPMjthrwAAAAAAAAAADMm+jw2ixq8ZUsPvoLGITwpnZc9HHUKvQAAgD8AAIA/M0xRPlxWrj8GRws/ORYAv2ANnz5rP+o+AAAAAAAAAACmn+W9dXu1P8I3nb7GQ8G+3CQpvsqdtb4AAAAAAAAAAOZ3PD6nG5U/hXfzPkGA8r7mJK8+LjK1PgAAAAAAAAAAAIsRvgd0/z7IdxM+maNCv3Sgib6ikkk+AAAAAAAAAACz8Rk9qBmrP3OjMD66WdW+Q7iBPCYgmD0AAAAAAAAAAC39Oz4hsYk/YAPsPtsRGL+KYsU+HezSPgAAAAAAAAAAM/qUPIUQ2rvMbrq967/BPMaeXT04yqC9AACAPwAAgD+znxk+JiGDP/btiz6x5DG/Ny3OPqALST4AAAAAAAAAAJrpBr3gSbI/mtdLvtmibL76+1u9VuJSvgAAAAAAAAAAmlFgPK6Isj8dImA+vG4+vpLz2bmL2RQ9AAAAAAAAAADNsB28T8A7vC6QLj6GMka9uGoZPUIjvz4AAIA/AACAP2bOVrxBJO0+qEgaPbDdYr/7Iqq7nOiuuwAAAAAAAAAAs8oUveHQp7qGYka40O4Us9iEfToG2yczAACAPwAAgD9mfcY87L26PzjDXj60B/s8VGnrusIdhb0AAAAAAAAAAGbjhzxIO4i6dnhkObp7CTTVvWC6siuEuAAAgD8AAIA/UxODPif2Mj/jjIa+Ojg8v1FQ4j5fQ6O+AAAAAAAAAADa4AA+wv9FPvnxuL4HDgy/TZmMPbMRr74AAAAAAAAAAM0uoLwGOZY/scqLvfHYQb8/qTW+FQCjvAAAAAAAAAAAgLuzPS98pD9/4Z8+rmwKvwUl8z0qoJU+AAAAAAAAAAC6bVG+Cw16P2bczr5FSBG/h1e/vpyuir4AAAAAAAAAAM0AEr24S6Q8UzniPslxc75jbIs+6GvNvgAAAAAAAIA/wCzGPb1L+D7uyBu8opg/vzbyIj5G/Pa8AAAAAAAAAAAzEUq8j3YqunHtura+1JWxqCbHOABk3jUAAIA/AACAP818AT5tPWE+c4XUvt9WHL9UKG89jFSqvgAAAAAAAAAAgNolPUinhboAYh++DbY3t9DMRTcALqQ2AACAPwAAgD/N8EO8Yd2NvA3mjT50Yb674vMZPZWdDj4AAIA/AACAPwAVtrwik4w/0aqwvTC9Sb8eOgS+08JXPQAAAAAAAAAAZgahOx/czLtILne8M8c3PFAAIz1e1B69AACAPwAAgD+akBa99lpNPaDhTD7Hdqm+IAERuz00/j0AAAAAAAAAADNHKjzpVA685A2BPZZJGD3aUWu9sDj3PQAAgD8AAIA/zevqPCl4d7pfgSG80YuVPB77Gzo//IG9AACAPwAAgD8zK2S76XFpvNUdjD7GNsu9jV5HPOoiQz4AAIA/AACAP3OtJj5vEbY/qhXwPmaL074Ze4w+HYNsPgAAAAAAAAAAZl2KvFrltT8Dpxe+C8SYvbArubx+aPS9AAAAAAAAAACaify7OHXJPj8VGD15qz6/1yMGvTYxhDwAAAAAAAAAAAAyFjwUkKG6ZFIwOWvrKDQxzJ86NANLuAAAgD8AAIA/ZixwPK57krqWDD0zF7xvLvW+7jrmArWzAACAPwAAgD/LTq6+DFaSPw62qL333RG/FqI6vxmgLz0AAAAAAAAAAAC4iTzICKe8kJB1voG1dT1XD+c8eFw9vAAAgD8AAIA/mm5RvezFpz+hWxu/eVwmv4HIaTsYHPu9AAAAAAAAAABme7Y8bOjJu3Zr9721jmi90XtJPShld74AAAAAAACAPzNzAbxIzrw9G9Qvvbbl5r6QM0S9oKaGvQAAAAAAAAAA5vIhvdcrdLtJL68+/9kvvu4fibyEsIy/AACAPwAAgD+a1Xq9DycevC6HCj57VFe+fp0NvV9ngj8AAIA/AACAP82hi70FM4c+OhtdPvUtHr+0Zoq9S6IFPgAAAAAAAAAAANT+vHtuj7qqFBA5adgQNOdZKblCIie4AACAPwAAgD/Nydw8ccMTu57WGL6SzBk7o5nYO/T0JbwAAIA/AACAP4A7QL3RTbE/WmuivmVdfb6Pm8C8UiNRvgAAAAAAAAAAZhfGPHvUjLqdgmQ2c7OYsLt6LLvl9YG1AACAPwAAgD/NN3A9Osl8P1qGPz5WEXW/JS4qPj2Z7D0AAAAAAAAAAJqe0DwUjIG6+nAtNSJXPDD0lAa6ELlUtAAAgD8AAIA/5skRvq29Lj54YCE/0LAFv9kRD70lGd8+AAAAAAAAAADNmIq7ewqNusvEYzceicQyFFmcOcFegrYAAIA/AACAP+qWhz5zWzI/Di6Xujy1N7++dRg/iX9FvgAAAAAAAAAAAAD2uCloErptMYU88a0MM1QNSbuNnnEzAACAPwAAgD9mxkU66EqxPzdlszwhcHm+Mo+kvLbFuL0AAAAAAAAAAM206zxIV6i6u1CcPe9Guzz6E0c7ULugvQAAgD8AAIA/rdo8vofRlj+gkWa+19MpvyDV2r7DuSi+AAAAAAAAAADNDCi7wzU2ugCuIbWA3/2vrGf0Ok1ZXTQAAIA/AACAP0Ael737/EU/SZkNvr6qbL8TGiy+Y7oWPQAAAAAAAAAAGmjovYxmjD9mJ2S+i8k1v/C+qL5yttS9AAAAAAAAAABzz6Y9rOe5PzT0Az8rE4K9d9ZJut2A4D0AAAAAAAAAAE2IJz2PkjQ5jmqhNQnVEzD7OJ+6Qm26tAAAgD8AAIA/zdjgu+E2irqyzoQ9s+S1Ms3z9zqIH0YyAACAPwAAgD+mhMc9CN3JPQvO4r4rc9e+CcQdvheMw74AAAAAAAAAAOaVJ74wRIQ/PaiQvo5SLL+Wuuy+x+WuvQAAAAAAAAAAqp50vkA15j5qzTs+NZEtv/1G977Aplw+AAAAAAAAAABmM1S9MeemP1/HyL61BQu/y0RIvROmZL4AAAAAAAAAAJrJQrwpSF+630QHM0l5XDCWa1M7LO62swAAgD8AAIA/swxcPUhDg7rNqCu07xyBr3GxDboo/64zAACAPwAAgD+avoi8zxRtvEcuTD4EZ0g8yIAUvXbW1T0AAIA/AACAP4AUuT3JqEU9G2lpvuN3sL5XScu88FY1vgAAAAAAAAAA2id0Pk40Uj+0ARg+D3Mkv7HZDz9FDCM8AAAAAAAAAADNGGw8HzaFu0bMIb6Xoos9r7Khu3weqjoAAIA/AACAPzPzejwKF367sllzPYftgz3vGiu8IJPSPAAAgD8AAIA/ZnYaO1LI57kKddy3PQIYs8tI/zpdJwM3AAAAAAAAgD+27XG+N8o8P/2HbDwTLCa/6ZsHvw1lzz0AAAAAAAAAAAaXH75YrR8/aucBvaCFQb843sS+fKEiPQAAAAAAAAAAgHOBvXs4AT83hIm7RXFUv5i0Br5WiUw8AAAAAAAAAACzapw9g8j7PrOdZz0HLle/EUkKPms6Fj0AAAAAAAAAAAD1tzzXuQG7Cu9/vV42pTy75Lg7GkmOvQAAgD8AAIA/AG/XPfO8LT8Wpw8+s89Jv5dPTj4/a6U8AAAAAAAAAABNvqi96EUTP8K4Urw9XVG/3jxDvlkshzsAAAAAAAAAAGYFrzxcgwG6goeAPdFgaDPNuRO5+kp/sgAAgD8AAIA/M1qAPdfVTTzDqqK+P1iMvo06Er55BC2+AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFf2hmadYckCUhpRSlIwBbJRLh4wBdJRHQLZ1PDk2gnN1fZQoaAZoCWgPQwj+ZffkoX5yQJSGlFKUaBVLnWgWR0C2dUKsIVuadX2UKGgGaAloD0MIkGtDxTj9cUCUhpRSlGgVS59oFkdAtnVB9Vmz0HV9lChoBmgJaA9DCNEGYAMiPnNAlIaUUpRoFUu5aBZHQLZ1R3974SJ1fZQoaAZoCWgPQwge+YOBJ79zQJSGlFKUaBVLw2gWR0C2dUdbs4T9dX2UKGgGaAloD0MIamrZWh9Hc0CUhpRSlGgVS8ZoFkdAtnVdC9h7V3V9lChoBmgJaA9DCPMDV3kCOnNAlIaUUpRoFUuxaBZHQLZ1Y/M4cWF1fZQoaAZoCWgPQwgfhIB8yfJxQJSGlFKUaBVLq2gWR0C2dW+xGDtgdX2UKGgGaAloD0MIfh6jPHOvcUCUhpRSlGgVS6poFkdAtnV7voePrHV9lChoBmgJaA9DCCdPWU2XRHBAlIaUUpRoFUuMaBZHQLZ1e18b70p1fZQoaAZoCWgPQwieJcgIaBN0QJSGlFKUaBVLx2gWR0C2dYhg3LmqdX2UKGgGaAloD0MIh2pKso7YcECUhpRSlGgVS6xoFkdAtnWGh0yP/HV9lChoBmgJaA9DCE1Iawx6cXNAlIaUUpRoFUu8aBZHQLZ1jgG8mKJ1fZQoaAZoCWgPQwhvRWKCWkZyQJSGlFKUaBVLl2gWR0C2dYz1schldX2UKGgGaAloD0MIG53zU5xNc0CUhpRSlGgVS9NoFkdAtnWReE7GN3V9lChoBmgJaA9DCA6/m27ZbXNAlIaUUpRoFUu6aBZHQLZ1mAwPAfx1fZQoaAZoCWgPQwhyM9yAz/VxQJSGlFKUaBVLu2gWR0C2dZ+vMbFTdX2UKGgGaAloD0MIoYDtYMRIdECUhpRSlGgVS9ZoFkdAtnWp09yLh3V9lChoBmgJaA9DCN4FSgpsg3FAlIaUUpRoFUu2aBZHQLZ1p7kn1Fp1fZQoaAZoCWgPQwium1JeqytxQJSGlFKUaBVLlmgWR0C2dbMcZLqVdX2UKGgGaAloD0MIAOMZNPSrc0CUhpRSlGgVS6toFkdAtnW7SCvovHV9lChoBmgJaA9DCOI6xhUXT3JAlIaUUpRoFUu3aBZHQLZ1yX3g1m91fZQoaAZoCWgPQwjqQUEpmj1zQJSGlFKUaBVLtmgWR0C2deLEP1+RdX2UKGgGaAloD0MImUUotsJXdECUhpRSlGgVS6toFkdAtnXuIj4YanV9lChoBmgJaA9DCECJz52gWHBAlIaUUpRoFUuWaBZHQLZ18brkbP11fZQoaAZoCWgPQwgiHLPsiYFxQJSGlFKUaBVLqGgWR0C2dfmTHKfWdX2UKGgGaAloD0MIMxe4PNafc0CUhpRSlGgVS7loFkdAtnX+l2vB8HV9lChoBmgJaA9DCJNzYg+tcXBAlIaUUpRoFUudaBZHQLZ1/StvGZN1fZQoaAZoCWgPQwicTUcAdxtzQJSGlFKUaBVLwmgWR0C2dgg4ffXPdX2UKGgGaAloD0MIh6JAn0ixcUCUhpRSlGgVS6toFkdAtnYbDdgv13V9lChoBmgJaA9DCEloy7nUnnBAlIaUUpRoFUuhaBZHQLZ2JiI+GGp1fZQoaAZoCWgPQwjQK556ZNlwQJSGlFKUaBVLk2gWR0C2djhcJMQFdX2UKGgGaAloD0MImx9/aVHmckCUhpRSlGgVS6poFkdAtnY/HYHxBnV9lChoBmgJaA9DCAd7E0Ny73JAlIaUUpRoFUvEaBZHQLZ2RAPuogp1fZQoaAZoCWgPQwhkdavnpDtzQJSGlFKUaBVLtWgWR0C2dkorBj4IdX2UKGgGaAloD0MIjZjZ5/E0cUCUhpRSlGgVS6VoFkdAtnZQ04zabnV9lChoBmgJaA9DCKbTug2q/3JAlIaUUpRoFUvJaBZHQLZ2Vnq3VkN1fZQoaAZoCWgPQwhVF/AyA49xQJSGlFKUaBVLoWgWR0C2dlRLwnYydX2UKGgGaAloD0MIIsSVs/fIc0CUhpRSlGgVS6JoFkdAtnZiWjXWfHV9lChoBmgJaA9DCALYgAhx0nJAlIaUUpRoFUuTaBZHQLZ2aEYfnwJ1fZQoaAZoCWgPQwjvG197ptJzQJSGlFKUaBVLtWgWR0C2dnL/82rGdX2UKGgGaAloD0MIOEpenWMBdECUhpRSlGgVS7RoFkdAtnZ3yAhB7nV9lChoBmgJaA9DCLMpV3hXInNAlIaUUpRoFUu4aBZHQLZ2hVDrqt51fZQoaAZoCWgPQwgPSMK+nUxxQJSGlFKUaBVLpWgWR0C2doPNmlImdX2UKGgGaAloD0MIa2RXWgbRckCUhpRSlGgVS59oFkdAtnaK7rcCYHV9lChoBmgJaA9DCMWPMXetkXJAlIaUUpRoFUuSaBZHQLZ2kLeyiVV1fZQoaAZoCWgPQwgLmSuDKn1yQJSGlFKUaBVLhGgWR0C2dpCnDR+jdX2UKGgGaAloD0MI4SajynCmcUCUhpRSlGgVS55oFkdAtnaO5Xlr/XV9lChoBmgJaA9DCIHNOXjmynFAlIaUUpRoFUulaBZHQLZ2voE0SAZ1fZQoaAZoCWgPQwjHDipxHa9zQJSGlFKUaBVLsWgWR0C2dsIxtYSydX2UKGgGaAloD0MIRZxOshWackCUhpRSlGgVS4VoFkdAtnbB0q6OHXV9lChoBmgJaA9DCCKMn8Z9vXFAlIaUUpRoFUusaBZHQLZ2zjPOY6Z1fZQoaAZoCWgPQwh1c/G3vX1xQJSGlFKUaBVLnmgWR0C2dt7laKUFdX2UKGgGaAloD0MIY3rCEk+PcUCUhpRSlGgVS7BoFkdAtnbl/SYw7HV9lChoBmgJaA9DCHy1oziHcHJAlIaUUpRoFUu3aBZHQLZ27IPsiSt1fZQoaAZoCWgPQwi4sG68u2FxQJSGlFKUaBVLkmgWR0C2duqsuFpPdX2UKGgGaAloD0MI1SZO7vc1ckCUhpRSlGgVS7ZoFkdAtnb4DPnjhnV9lChoBmgJaA9DCMgoz7xcenFAlIaUUpRoFUusaBZHQLZ3Ag3Lmp51fZQoaAZoCWgPQwgAHebLCyxyQJSGlFKUaBVLiWgWR0C2dwhV+7UYdX2UKGgGaAloD0MIqHLaU/K0ckCUhpRSlGgVS7poFkdAtncOrPt2LnV9lChoBmgJaA9DCKBU+3S8+HFAlIaUUpRoFUuqaBZHQLZ3FEJBw/B1fZQoaAZoCWgPQwjcvdwnR6tyQJSGlFKUaBVLrGgWR0C2dxxuCPIXdX2UKGgGaAloD0MIzvxqDhDIcECUhpRSlGgVS5ZoFkdAtnczUnXumnV9lChoBmgJaA9DCPLs8q1PU3JAlIaUUpRoFUuNaBZHQLZ3SStvGZN1fZQoaAZoCWgPQwjoobYN4xhyQJSGlFKUaBVLr2gWR0C2d11u3trsdX2UKGgGaAloD0MIM8NGWb/Sc0CUhpRSlGgVS9JoFkdAtndbfJmuknV9lChoBmgJaA9DCInS3uBL6XJAlIaUUpRoFUuaaBZHQLZ3Y1q33Ht1fZQoaAZoCWgPQwjAPc+fdhx0QJSGlFKUaBVLt2gWR0C2d2Muez2OdX2UKGgGaAloD0MIJAnCFVAbb0CUhpRSlGgVS45oFkdAtndiq1gH/3V9lChoBmgJaA9DCCmwAKaMI3BAlIaUUpRoFUuHaBZHQLZ3YfdRBNV1fZQoaAZoCWgPQwjVeOkmsfVxQJSGlFKUaBVLi2gWR0C2d2iY1He8dX2UKGgGaAloD0MIICi37Xv6ckCUhpRSlGgVS6RoFkdAtnd06bONYXV9lChoBmgJaA9DCCUi/Iug03FAlIaUUpRoFUvZaBZHQLZ3dPgvUSZ1fZQoaAZoCWgPQwgb2ZWW0TpxQJSGlFKUaBVLjWgWR0C2d3Rz/6wddX2UKGgGaAloD0MIXFoNiXvgRkCUhpRSlGgVS2NoFkdAtnd6mhufmXV9lChoBmgJaA9DCJKwbydRiXNAlIaUUpRoFUusaBZHQLZ3hse4kNZ1fZQoaAZoCWgPQwisHjAPmVRzQJSGlFKUaBVLuGgWR0C2d4yR4hUzdX2UKGgGaAloD0MIEw8om3JCc0CUhpRSlGgVS9BoFkdAtneLomoitHV9lChoBmgJaA9DCK4q+65IMXNAlIaUUpRoFUu8aBZHQLZ3k3Roh6l1fZQoaAZoCWgPQwjlRpG1hjtzQJSGlFKUaBVLxWgWR0C2d5LN8ma6dX2UKGgGaAloD0MIqFKzB5qMckCUhpRSlGgVS4loFkdAtnej38GcF3V9lChoBmgJaA9DCIbmOo2003JAlIaUUpRoFUvAaBZHQLZ3qPJaJRB1fZQoaAZoCWgPQwgNcEG2LN5xQJSGlFKUaBVLoWgWR0C2d8AiRnvldX2UKGgGaAloD0MIZvUOt0MUcECUhpRSlGgVS5doFkdAtnfbmbLEDXV9lChoBmgJaA9DCGGqmbWU7XBAlIaUUpRoFUujaBZHQLZ34rTH80l1fZQoaAZoCWgPQwhlGeJYF0lxQJSGlFKUaBVLtGgWR0C2d+ffO2RadX2UKGgGaAloD0MIJ4i6D0DbckCUhpRSlGgVS7loFkdAtnfvjFQ2uXV9lChoBmgJaA9DCKWEYFW9FXNAlIaUUpRoFUu6aBZHQLZ37r1uivh1fZQoaAZoCWgPQwig3oyab0txQJSGlFKUaBVLrmgWR0C2d+2vr4WUdX2UKGgGaAloD0MILA/SU+S3ckCUhpRSlGgVS8JoFkdAtnf7t3OfNHV9lChoBmgJaA9DCEnYt5MIKHJAlIaUUpRoFUu2aBZHQLZ3+2Pkq+d1fZQoaAZoCWgPQwioNjgRPe9wQJSGlFKUaBVLmWgWR0C2d/pflZHNdX2UKGgGaAloD0MIuM1UiEe3ckCUhpRSlGgVS7BoFkdAtngHT+ee4HV9lChoBmgJaA9DCMgljjzQ7nBAlIaUUpRoFUuuaBZHQLZ4Bhh6Skl1fZQoaAZoCWgPQwjnxYmvttFyQJSGlFKUaBVL3GgWR0C2eA4atLcsdX2UKGgGaAloD0MIhbUxdkLVc0CUhpRSlGgVS8VoFkdAtngL0UXYUXV9lChoBmgJaA9DCDNOQ1ThuHJAlIaUUpRoFUu4aBZHQLZ4E14xDb91fZQoaAZoCWgPQwh3g2itaHVxQJSGlFKUaBVLqmgWR0C2eBK2a2F4dX2UKGgGaAloD0MIXJGYoIbackCUhpRSlGgVS75oFkdAtngq1PWQOnV9lChoBmgJaA9DCL1tpkL833JAlIaUUpRoFUu9aBZHQLZ4L9t/Fzd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 1024, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e57287ea808150aeddda71052f469904de4c1a71297f143437f2e2e193e68c51
3
- size 197931
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8f9c44349600a60e004b7af09d00b8804a70a1ed6cfce34b15eff9506e39d0d
3
+ size 183356
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 283.04727809050854, "std_reward": 17.01619288644317, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T13:21:20.397348"}
 
1
+ {"mean_reward": 285.2381880733882, "std_reward": 16.436596692800553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T15:07:59.869385"}
thicc-ppo-LunarLander-rc.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2f16c2bd0249dd1410992c8534a705ff409ba6e3ae70f42dcf4211a6054e0701
3
- size 245682
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6f4ded3da4f49f5bc7f8dfc949e7a8c4afe0dd357eebd6053f05d17634db4f6
3
+ size 300218
thicc-ppo-LunarLander-rc/data CHANGED
@@ -4,24 +4,24 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f322edd9e50>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f322edd9ee0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f322edd9f70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f322eddd040>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f322eddd0d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f322eddd160>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f322eddd1f0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f322eddd280>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f322eddd310>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f322eddd3a0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f322eddd430>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f322edda1b0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVagAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZRLIGF1ZXUu",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  128,
@@ -32,6 +32,7 @@
32
  32
33
  ],
34
  "vf": [
 
35
  32
36
  ]
37
  }
@@ -58,13 +59,13 @@
58
  "dtype": "int64",
59
  "_np_random": null
60
  },
61
- "n_envs": 64,
62
- "num_timesteps": 10027008,
63
- "_total_timesteps": 10000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1651724725.1190345,
68
  "learning_rate": 0.0003,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
@@ -73,11 +74,11 @@
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAGaasDsheKi8+llSOw4AIT2hGsK9bQCwOwAAgD8AAIA/WiG9PR6ioT8uY80+HD8Uv11yCj55yYI+AAAAAAAAAAAAiDS8wz0Wuq0SWzzdfbA8IK01O8WUmD0AAIA/AACAP0rxcL6apPQ+ujFfPjcpJr/3Ff2+ULR+PgAAAAAAAAAA3oeQvhh0Oz+S1Bo+yqs0v7b7+b7TxHI+AAAAAAAAAABNBfO9xi2qP/J4jL77Qxu/YFx5vulCOr4AAAAAAAAAAGZy9zt2NjK8xfXsPSuhIzzk6gW90/oBvgAAgD8AAIA/TeYgPUjfiboauEKzFaq0r5nHtzpRecczAACAPwAAgD+asIA+D6oqP9/vhL5jyh2/jEilPu/zu74AAAAAAAAAAGaflDzfo7Y/N3KBPg0KszxAwYK8skIuvAAAAAAAAAAAAPqmPK7Dhrpuvwey35qEsGnNKbtbfBwzAACAPwAAgD+aYaU7z2AGvCsYTDuXx9g7R+dVPfI5wLwAAIA/AACAP81kgTvheJC62j1ctZVd9K9gHAi5gVOKNAAAgD8AAIA/AOCYPLy2sz/vKSA//6wDvshalry+ZOO9AAAAAAAAAACzX+E9GR2VPwyBrD57PDu/XBpePibgmD4AAAAAAAAAAACD8zyhnau87icLvtmaoTsjMV89SsYPtwAAgD8AAIA/TQtkPfqovD/GqCs/Eb+DPkh4XLzOgZo9AAAAAAAAAAAAUAk8ZLaMP5bECz0Cl2i/hjI1PPYtwzwAAAAAAAAAAM22p7wU8Iy6dWotNOZ7GTCruK06lzicswAAgD8AAIA/7VBSvi2KPD9wiwU+OSMxv09ts74mriY+AAAAAAAAAACaDMk8cXBIu66KiLsQY4g8L8qePI0ba70AAIA/AACAP/OMKj6ogwM/eBW2vgpjHL8kBUg+VM2uvgAAAAAAAAAAg9LbPvQZ173WCIA8vG6kPEfEub2ppTs8AACAPwAAgD8zUPa9Rf0vPyLyCjxv7jG/U32Tvnk0rjwAAAAAAAAAAGbGFTxiULU/+0OsPfrLHr7vNoK9oqQWvgAAAAAAAAAAc6vKvVqjND5n2Lw+D9L3vkKNFbyaKa8+AAAAAAAAAACahjA9SKH6uvFWOryMTJQ8DBAMPKMTgL0AAIA/AACAPzMdY7yc8a0+yy5UPHU5Kr+coCq8P7SIPAAAAAAAAAAA7dgFPhSPdT8Ovqw+RkZAvyTFlT6GwqY+AAAAAAAAAABt+T4+W+y4vAjMgrjERxa4s4smvhpggTcAAIA/AACAPzM3gj3WOTo9ETbCvsVX1L5m43S+Y2qBvgAAAAAAAAAAM6cRvXEBDLu7fVQ8dAaNPJm3p7sLOnQ9AACAPwAAgD8zn6U7hRXeu8QauT15DD492ueivA0bS7sAAIA/AACAPzNrvTxPPkc9GvaivuzEyr6whcu+IMdSvgAAAAAAAAAA5vMXPQRBrD8xHTo/S7Uhv3vHvby+u1W8AAAAAAAAAADNQyM+V8ElP2E1sbzFpC+/cU7BPtmxEL4AAAAAAAAAAJpPdTyPtCc9dGO/vQyGzb4Gdki8OVqqvQAAAAAAAAAAZkuYPIPTaLwShwe+Zo2JPWZWjz1es2M8AACAPwAAgD8zx5o8ZeDHPqqi0Dqr0Ey/6j5vPejhgrwAAAAAAAAAAGZm5DpcrS68xFu5OwBnMD0aXww9GyQIuwAAgD8AAIA/My+SO6RFXLsIQIm9ye2sPDQdQjtaE9g6AACAPwAAgD8TbU0+UkQZP6tUqL6MtTe/R4dmPhcMlL4AAAAAAAAAAOYPMD4YvU8/OOJDPueSPL/09eE+ZAO9PAAAAAAAAAAAzSKyvRvwnj2TSKk+4hy+vmX9CD79vHM+AAAAAAAAAABmaDi8Uququ/YLB7zP/Ps7RWoHvShT4zwAAIA/AACAP2Y2xjrEoYY+C+SNPa+yHb+PkSM97LWHOwAAAAAAAAAAJhmCPtcLYz/j8Jg9yrk4vyynFT9yFzm+AAAAAAAAAACaFqc82B+XP16xRT1OsD6/7ZvcvC2GuD0AAAAAAAAAAM0sDDt4o7Q/AtZdPuvwZzx3/CG7Hv9IvQAAAAAAAAAAM690vdFsgD3Kc8M+t5yPvoXAIj57l98+AAAAAAAAAAANrBa+YamZPqYdwz7dERu//vSZvco0kj4AAAAAAAAAAOYsFz0PBzc9hUT6vGl6pb48ydc9UnbWPAAAAAAAAAAADcDvvZpQjT/jC/6+9UdHv8HZML5uKLK+AAAAAAAAAAATaB6+YjLtPj4AhT4/Nhu/lxJ3vlicgD4AAAAAAAAAAKbLqz0oKJ0/3idTPjqHKr+SjW097MiBPgAAAAAAAAAAABnxvHv7tz8byfS+7vUEPj3lwTyIME08AAAAAAAAAAAzgw87cdY2uyynnL3VqJE8TiZhPI5Zer0AAIA/AACAPxplfz3pzl89qn6Fvgq7s75Kwbc7c8RQvgAAAAAAAAAAzcgIvciajju2v6g+67kyvqyPEz592FS/AAAAAAAAgD8zMyc74fCQulMu9TNVJbkvxTj2ubpSqLMAAIA/AACAP5PeJj5ba4U/rbCxPtEFKb80y+g+c2KRPgAAAAAAAAAAmhn0PFUkCz6eGjq9zjQKvwyAZT3P/w69AAAAAAAAAAAAuJ28T8AIvLnrBjw+WfM78xdgPdPO2LwAAIA/AACAP5pYrbzhLoy6W7TrMzNqKa83hwc7fg2mswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
80
- ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
81
  },
82
  "_last_original_obs": null,
83
  "_episode_num": 0,
@@ -86,7 +87,7 @@
86
  "_current_progress_remaining": -0.0027007999999999477,
87
  "ep_info_buffer": {
88
  ":type:": "<class 'collections.deque'>",
89
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsfz5tqDHc0CUhpRSlIwBbJRLmowBdJRHQKoNpyH2ys11fZQoaAZoCWgPQwj8cma7QvhwQJSGlFKUaBVLi2gWR0CqDdakqMFVdX2UKGgGaAloD0MILPUsCOXRSUCUhpRSlGgVS21oFkdAqg3WOCGvfXV9lChoBmgJaA9DCMTOFDpv2nFAlIaUUpRoFUu1aBZHQKoN5DE3sHB1fZQoaAZoCWgPQwhENSVZh+pwQJSGlFKUaBVLqWgWR0CqDeMwco6TdX2UKGgGaAloD0MI1o7iHPXOcUCUhpRSlGgVS5JoFkdAqg3ywt8NQXV9lChoBmgJaA9DCJV9VwQ/UXJAlIaUUpRoFUunaBZHQKoN8p1ie/Z1fZQoaAZoCWgPQwjdtBmnoQlyQJSGlFKUaBVLwGgWR0CqDf/4IrvtdX2UKGgGaAloD0MIn1c89YjZcUCUhpRSlGgVS6RoFkdAqg4HYe1a4nV9lChoBmgJaA9DCMhCdAic93BAlIaUUpRoFUu4aBZHQKoOB1mrbQF1fZQoaAZoCWgPQwjiW1g3XqRxQJSGlFKUaBVLpmgWR0CqDgdB0ITodX2UKGgGaAloD0MIlzszwTBzcUCUhpRSlGgVS6hoFkdAqg4TfDUExXV9lChoBmgJaA9DCHL75ZOVKHNAlIaUUpRoFUu8aBZHQKoOHzzVc2R1fZQoaAZoCWgPQwieQUP/xIpxQJSGlFKUaBVLr2gWR0CqDmu1OTJRdX2UKGgGaAloD0MIliL5SiBIckCUhpRSlGgVS5FoFkdAqg6OVHFxXHV9lChoBmgJaA9DCO8dNSaEmHJAlIaUUpRoFUuhaBZHQKoOrzDGcWl1fZQoaAZoCWgPQwg/jubICitzQJSGlFKUaBVLzGgWR0CqDrZbpu/DdX2UKGgGaAloD0MIjuiedY3OckCUhpRSlGgVS65oFkdAqg7/QWvbGnV9lChoBmgJaA9DCNgN2xalyXBAlIaUUpRoFUu3aBZHQKoPIrbQC0Z1fZQoaAZoCWgPQwjGpSpt8YNzQJSGlFKUaBVLsWgWR0CqDzIddVvNdX2UKGgGaAloD0MI106UhMRPcUCUhpRSlGgVS8VoFkdAqg9BSNwR5HV9lChoBmgJaA9DCOOo3ERtD3JAlIaUUpRoFUu7aBZHQKoPQYxcmjV1fZQoaAZoCWgPQwjgL2ZLVq9yQJSGlFKUaBVLsGgWR0CqD0ce8wpOdX2UKGgGaAloD0MI1LZhFESJckCUhpRSlGgVS8BoFkdAqg9rXvphW3V9lChoBmgJaA9DCOLplbLMjnJAlIaUUpRoFUucaBZHQKoPa19fCyh1fZQoaAZoCWgPQwhr1hnf1zxwQJSGlFKUaBVLk2gWR0CqD3C/47A+dX2UKGgGaAloD0MIoBfuXJjHb0CUhpRSlGgVS59oFkdAqg+AJC0F83V9lChoBmgJaA9DCIaNsn6zBXJAlIaUUpRoFUvEaBZHQKoPk1TBInV1fZQoaAZoCWgPQwhMa9PYXgNxQJSGlFKUaBVLmmgWR0CqD6iY1He8dX2UKGgGaAloD0MIkBX8NgQic0CUhpRSlGgVS7FoFkdAqg/R4W1twnV9lChoBmgJaA9DCHoYWp2cGXJAlIaUUpRoFUupaBZHQKoP9PuXu3N1fZQoaAZoCWgPQwiYaJCC50FxQJSGlFKUaBVLrGgWR0CqD/vHktEodX2UKGgGaAloD0MIoik7/eAtckCUhpRSlGgVS4toFkdAqg/7tPYWcnV9lChoBmgJaA9DCF1vm6mQxnFAlIaUUpRoFUucaBZHQKoP+uOCGvh1fZQoaAZoCWgPQwi/LO3UnFFyQJSGlFKUaBVLoGgWR0CqEAkcjqwAdX2UKGgGaAloD0MIEeLK2TtCckCUhpRSlGgVS9BoFkdAqhAPS6UaAHV9lChoBmgJaA9DCJmEC3kE1XBAlIaUUpRoFUuuaBZHQKoQD1VYISl1fZQoaAZoCWgPQwhm9Q63A39zQJSGlFKUaBVLq2gWR0CqED9Cu2ZzdX2UKGgGaAloD0MIizOGOUGTcUCUhpRSlGgVS51oFkdAqhBMH8jzI3V9lChoBmgJaA9DCGK/J9ZpFXBAlIaUUpRoFUuNaBZHQKoQbIsAeaN1fZQoaAZoCWgPQwj2YignWphyQJSGlFKUaBVLrGgWR0CqEHV4HHFQdX2UKGgGaAloD0MIpOAp5IqUcECUhpRSlGgVS6ZoFkdAqhCJ33YcvXV9lChoBmgJaA9DCDze5Lco+3BAlIaUUpRoFUu/aBZHQKoQmHuZ1FJ1fZQoaAZoCWgPQwjdW5GYoBtyQJSGlFKUaBVLtWgWR0CqEJ8oQWepdX2UKGgGaAloD0MIP+PCgZDycUCUhpRSlGgVS35oFkdAqhCdy7wrlXV9lChoBmgJaA9DCFgdOdKZXXFAlIaUUpRoFUuvaBZHQKoQug/Tspp1fZQoaAZoCWgPQwj43XTLDgRyQJSGlFKUaBVLn2gWR0CqEM6RyOrAdX2UKGgGaAloD0MI5E1+i040c0CUhpRSlGgVS85oFkdAqhDV6mfoR3V9lChoBmgJaA9DCA8r3PIROnRAlIaUUpRoFUvMaBZHQKoQ6oJiRW91fZQoaAZoCWgPQwgZr3lV55hzQJSGlFKUaBVLq2gWR0CqEP3bmEGrdX2UKGgGaAloD0MIxY7GoT6EcECUhpRSlGgVS6JoFkdAqhEn0TURWnV9lChoBmgJaA9DCMFwrmGGCHJAlIaUUpRoFUuoaBZHQKoRTJQLux91fZQoaAZoCWgPQwgcX3tmiVlzQJSGlFKUaBVLyWgWR0CqEUuwxFiKdX2UKGgGaAloD0MIr+3tlmRtckCUhpRSlGgVS5hoFkdAqhGzZ13dK3V9lChoBmgJaA9DCOoj8Idf5XFAlIaUUpRoFUu6aBZHQKoRs3o9s8B1fZQoaAZoCWgPQwjJ5xVPvbdyQJSGlFKUaBVLpGgWR0CqEbn0btJGdX2UKGgGaAloD0MIwck2cAc+ckCUhpRSlGgVS7ZoFkdAqhHJLZi/f3V9lChoBmgJaA9DCPp+arz0PnJAlIaUUpRoFUuuaBZHQKoRyQd0aIh1fZQoaAZoCWgPQwg0oUliiSNxQJSGlFKUaBVLk2gWR0CqEc/kvK2bdX2UKGgGaAloD0MIkKSkh+E3c0CUhpRSlGgVS7NoFkdAqhHX863iJnV9lChoBmgJaA9DCJcA/FOqQnJAlIaUUpRoFUuVaBZHQKoSDJGvwE11fZQoaAZoCWgPQwhTIoleRsF0QJSGlFKUaBVLsmgWR0CqEiKPGQ0XdX2UKGgGaAloD0MImZzaGWYVc0CUhpRSlGgVS5poFkdAqhIiouPFN3V9lChoBmgJaA9DCJ4/bVRnQXNAlIaUUpRoFUu2aBZHQKoSRBrvb491fZQoaAZoCWgPQwiW6CyzCF9zQJSGlFKUaBVLpGgWR0CqEkQtrbg1dX2UKGgGaAloD0MI7IhDNlAcckCUhpRSlGgVS6VoFkdAqhJa5CngpHV9lChoBmgJaA9DCNNmnIZoxXNAlIaUUpRoFUvBaBZHQKoSbo24usd1fZQoaAZoCWgPQwhY5q26TvByQJSGlFKUaBVLqmgWR0CqEotp22XtdX2UKGgGaAloD0MITGvT2B4KcECUhpRSlGgVS7VoFkdAqhKul0o0AXV9lChoBmgJaA9DCMcTQZyHD3NAlIaUUpRoFUvBaBZHQKoSrZg5R0l1fZQoaAZoCWgPQwgqG9ZUlkhyQJSGlFKUaBVLlmgWR0CqEryg5BC2dX2UKGgGaAloD0MI5h4SvvdyckCUhpRSlGgVS7hoFkdAqhLDO/tY0XV9lChoBmgJaA9DCN50yw5x2HBAlIaUUpRoFUu1aBZHQKoSyq0+kgx1fZQoaAZoCWgPQwgPJzCdloVxQJSGlFKUaBVLjmgWR0CqEtdRrJr+dX2UKGgGaAloD0MIqYO8HsxIckCUhpRSlGgVS7hoFkdAqhLz6Hj6vnV9lChoBmgJaA9DCHzw2qWNunRAlIaUUpRoFUu1aBZHQKoS+PEKmbd1fZQoaAZoCWgPQwire2RzlShxQJSGlFKUaBVLkWgWR0CqEyrXcxj8dX2UKGgGaAloD0MICFkWTPwXTkCUhpRSlGgVS3RoFkdAqhMwOUdJa3V9lChoBmgJaA9DCH4CKEZWHHNAlIaUUpRoFUvbaBZHQKoTP1Oj7AN1fZQoaAZoCWgPQwgbYrzmVfZvQJSGlFKUaBVLqWgWR0CqE0Z0CA+ZdX2UKGgGaAloD0MI8rImFjiocECUhpRSlGgVS7ZoFkdAqhNS+Yc/+3V9lChoBmgJaA9DCO54k98iuHBAlIaUUpRoFUufaBZHQKoTfK/VRUF1fZQoaAZoCWgPQwgknBa86FJvQJSGlFKUaBVLoWgWR0CqE5jklu3udX2UKGgGaAloD0MItcAeEym4cECUhpRSlGgVS5hoFkdAqhPBSR8tw3V9lChoBmgJaA9DCL5KPnbXZHJAlIaUUpRoFUuJaBZHQKoT86T4cm11fZQoaAZoCWgPQwgFpz6QfKhyQJSGlFKUaBVLs2gWR0CqE/m2b5M2dX2UKGgGaAloD0MIrp6T3vd5c0CUhpRSlGgVS7VoFkdAqhQrw6QvH3V9lChoBmgJaA9DCNukorG2anNAlIaUUpRoFUuvaBZHQKoUK9zOopB1fZQoaAZoCWgPQwgGvqJbL01wQJSGlFKUaBVLpmgWR0CqFFHoHLRsdX2UKGgGaAloD0MIgCctXBbxckCUhpRSlGgVS7VoFkdAqhRSXF98Z3V9lChoBmgJaA9DCAjnU8dqh3BAlIaUUpRoFUulaBZHQKoUdwuM+/x1fZQoaAZoCWgPQwhSnQ5kPdZzQJSGlFKUaBVL22gWR0CqFH+B6KLsdX2UKGgGaAloD0MIhpM0f0wIckCUhpRSlGgVS6doFkdAqhSFycTakHV9lChoBmgJaA9DCMl06PT8F3FAlIaUUpRoFUvCaBZHQKoUsqAjIJZ1fZQoaAZoCWgPQwjovTEEQDJzQJSGlFKUaBVLxWgWR0CqFN43m3fAdX2UKGgGaAloD0MICcbBpaPNc0CUhpRSlGgVS7VoFkdAqhTmZG8VYnV9lChoBmgJaA9DCCygUE9foHJAlIaUUpRoFUvEaBZHQKoU7OKwY+B1fZQoaAZoCWgPQwhVTKWf8MdyQJSGlFKUaBVLtGgWR0CqFPWoWHk+dX2UKGgGaAloD0MIobskzoo9cECUhpRSlGgVS5hoFkdAqhUD74zrNXV9lChoBmgJaA9DCOcBLPJrD3JAlIaUUpRoFUu3aBZHQKoVEaOPvKF1ZS4="
90
  },
91
  "ep_success_buffer": {
92
  ":type:": "<class 'collections.deque'>",
@@ -99,7 +100,7 @@
99
  "ent_coef": 0.01,
100
  "vf_coef": 0.5,
101
  "max_grad_norm": 0.5,
102
- "batch_size": 256,
103
  "n_epochs": 4,
104
  "clip_range": {
105
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ce0f6ae50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ce0f6aee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ce0f6af70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ce0f6e040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6ce0f6e0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6ce0f6e160>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ce0f6e1f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6ce0f6e280>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ce0f6e310>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ce0f6e3a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ce0f6e430>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6ce0f6b1b0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  128,
 
32
  32
33
  ],
34
  "vf": [
35
+ 64,
36
  32
37
  ]
38
  }
 
59
  "dtype": "int64",
60
  "_np_random": null
61
  },
62
+ "n_envs": 128,
63
+ "num_timesteps": 20054016,
64
+ "_total_timesteps": 20000000,
65
  "_num_timesteps_at_start": 0,
66
  "seed": null,
67
  "action_noise": null,
68
+ "start_time": 1651728713.0254502,
69
  "learning_rate": 0.0003,
70
  "tensorboard_log": null,
71
  "lr_schedule": {
 
74
  },
75
  "_last_obs": {
76
  ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAACZVnz3ONfs9ouCYvI5Mub4UfhM+E2rIPQAAAAAAAAAAM9+Mu7Ylsj/6FFi++3LgvsZ/PDtWw9c7AAAAAAAAAACAjRk9rr2VusvzcD30xSWzqaLGujWGT7MAAIA/AACAPwC6hTyFU+K7oAMbvvRPIrw9AA08auEyvgAAgD8AAIA/5poePR88+rtHxjG9vxlNPcOROj01M0W8AACAPwAAgD+6NQQ+nSGCPg4Lrr4+RDa/+nqEPaqKbr4AAAAAAAAAALP2dD3D8VK68mhnuhWe17VVzL068jOGOQAAgD8AAAAAZlZvPHd3sj9Qtk8+ak8+vte7TLyhVqC7AAAAAAAAAAAAPoc80h3Bu/4A1L291JI9o5MyOzIDVDsAAIA/AACAPwAShzyPHl66GtJwPd/fDTnYBlc7YbcKOAAAgD8AAIA/ZmbsunFyc7szoB48Cy+NPMeBn7yWKnI9AACAPwAAgD+aEwU8wxV6upbjQbQmdJavyOkZu9AosTMAAIA/AACAPwAnA73UFDM/1bqCvPEde7/1QqO9en0JPQAAAAAAAAAAzShAPjEFiD8FNaY+aY4Wv2BS5z5qPI0+AAAAAAAAAACaoRc8uNbAuU+SnLauxS2y35S/OoaGuzUAAIA/AACAP2A8Hr5qo/I+a+zzPakiMb9ROqa+JtvQPQAAAAAAAAAAgPQxPRyycry2IAC+kRYAvFTQVTtA1Ay+AACAPwAAgD8AceE8Y+FJPVC1EL4ZW8S+JiUCPhb1J7sAAAAAAAAAALNZEj7IonQ/rgK8PtaPLb9g+J8+WgilPgAAAAAAAAAAZjD6vEGSpLx2+rQ+myiSu35Yi72hQY+9AACAPwAAgD/NKu48klqsP/7zjT7dw8++RcTwu07jLT0AAAAAAAAAAJNdNL5f4Tg/X28dPs7ZV7/RZrK+scIXPgAAAAAAAAAADVP5veEAEj9SpfU9DrBav/fvY76LIf89AAAAAAAAAAAAmJ27e19+P7isv7zLF2q/jy1BvfDDnT0AAAAAAAAAAJqiw7w20rI/lwI1vvnlSb4xeOS8XgsBvgAAAAAAAAAAZia/O9DHtD83QRc/T++BPbpE3bu1Cwm+AAAAAAAAAADmFks9H+Pau4OWbb4iKAM932VMPSj+170AAIA/AACAP7vDg742gXE/gtM0vjtTDr/wSRq/otGuvQAAAAAAAAAANaSNviHHPj/tb2Y9kZo7v8kMBL+ukW8+AAAAAAAAAAC21VW+F8pHPxoq07u9Y1O/cqzUvsYOaj0AAAAAAAAAAOa1YD5srBI/y7invnE6Q78GE8s+vu20vgAAAAAAAAAAzSY6vGhAqz+2WDG+f3Qbv08+MbzX3r+9AAAAAAAAAABmkBc9X6kfPk0Asr1U7AO/sW7fu5bH+7wAAAAAAAAAAJqHMz68wIY/1oyzPt3NHL/GftU+4yGVPgAAAAAAAAAAk9FUPkYovz7zK9y+X5g4v1Jblz7u1Ny+AAAAAAAAAABmZ+M8EUqmPzdKnj6DCje/+jGvPB35Rj4AAAAAAAAAAG23Oj5w650+F3CXvmRIKL+PozY+Mj5mvgAAAAAAAAAAACPGPIQFoT+KUVw+54dMv/bAGz31dCs+AAAAAAAAAAAAS4o9s68aP9FRsD2FuEe/T9D5PR1sK70AAAAAAAAAAM1Yjbxb9Uk/7tpEPYVqgb/OG6O9EyQDPgAAAAAAAAAAmhbpvCayej9+P8+9vgSDv21pU70hq8Q6AAAAAAAAAABmZYI8HzT6PB447rz7hZG+3gLIPMjthrwAAAAAAAAAADMm+jw2ixq8ZUsPvoLGITwpnZc9HHUKvQAAgD8AAIA/M0xRPlxWrj8GRws/ORYAv2ANnz5rP+o+AAAAAAAAAACmn+W9dXu1P8I3nb7GQ8G+3CQpvsqdtb4AAAAAAAAAAOZ3PD6nG5U/hXfzPkGA8r7mJK8+LjK1PgAAAAAAAAAAAIsRvgd0/z7IdxM+maNCv3Sgib6ikkk+AAAAAAAAAACz8Rk9qBmrP3OjMD66WdW+Q7iBPCYgmD0AAAAAAAAAAC39Oz4hsYk/YAPsPtsRGL+KYsU+HezSPgAAAAAAAAAAM/qUPIUQ2rvMbrq967/BPMaeXT04yqC9AACAPwAAgD+znxk+JiGDP/btiz6x5DG/Ny3OPqALST4AAAAAAAAAAJrpBr3gSbI/mtdLvtmibL76+1u9VuJSvgAAAAAAAAAAmlFgPK6Isj8dImA+vG4+vpLz2bmL2RQ9AAAAAAAAAADNsB28T8A7vC6QLj6GMka9uGoZPUIjvz4AAIA/AACAP2bOVrxBJO0+qEgaPbDdYr/7Iqq7nOiuuwAAAAAAAAAAs8oUveHQp7qGYka40O4Us9iEfToG2yczAACAPwAAgD9mfcY87L26PzjDXj60B/s8VGnrusIdhb0AAAAAAAAAAGbjhzxIO4i6dnhkObp7CTTVvWC6siuEuAAAgD8AAIA/UxODPif2Mj/jjIa+Ojg8v1FQ4j5fQ6O+AAAAAAAAAADa4AA+wv9FPvnxuL4HDgy/TZmMPbMRr74AAAAAAAAAAM0uoLwGOZY/scqLvfHYQb8/qTW+FQCjvAAAAAAAAAAAgLuzPS98pD9/4Z8+rmwKvwUl8z0qoJU+AAAAAAAAAAC6bVG+Cw16P2bczr5FSBG/h1e/vpyuir4AAAAAAAAAAM0AEr24S6Q8UzniPslxc75jbIs+6GvNvgAAAAAAAIA/wCzGPb1L+D7uyBu8opg/vzbyIj5G/Pa8AAAAAAAAAAAzEUq8j3YqunHtura+1JWxqCbHOABk3jUAAIA/AACAP818AT5tPWE+c4XUvt9WHL9UKG89jFSqvgAAAAAAAAAAgNolPUinhboAYh++DbY3t9DMRTcALqQ2AACAPwAAgD/N8EO8Yd2NvA3mjT50Yb674vMZPZWdDj4AAIA/AACAPwAVtrwik4w/0aqwvTC9Sb8eOgS+08JXPQAAAAAAAAAAZgahOx/czLtILne8M8c3PFAAIz1e1B69AACAPwAAgD+akBa99lpNPaDhTD7Hdqm+IAERuz00/j0AAAAAAAAAADNHKjzpVA685A2BPZZJGD3aUWu9sDj3PQAAgD8AAIA/zevqPCl4d7pfgSG80YuVPB77Gzo//IG9AACAPwAAgD8zK2S76XFpvNUdjD7GNsu9jV5HPOoiQz4AAIA/AACAP3OtJj5vEbY/qhXwPmaL074Ze4w+HYNsPgAAAAAAAAAAZl2KvFrltT8Dpxe+C8SYvbArubx+aPS9AAAAAAAAAACaify7OHXJPj8VGD15qz6/1yMGvTYxhDwAAAAAAAAAAAAyFjwUkKG6ZFIwOWvrKDQxzJ86NANLuAAAgD8AAIA/ZixwPK57krqWDD0zF7xvLvW+7jrmArWzAACAPwAAgD/LTq6+DFaSPw62qL333RG/FqI6vxmgLz0AAAAAAAAAAAC4iTzICKe8kJB1voG1dT1XD+c8eFw9vAAAgD8AAIA/mm5RvezFpz+hWxu/eVwmv4HIaTsYHPu9AAAAAAAAAABme7Y8bOjJu3Zr9721jmi90XtJPShld74AAAAAAACAPzNzAbxIzrw9G9Qvvbbl5r6QM0S9oKaGvQAAAAAAAAAA5vIhvdcrdLtJL68+/9kvvu4fibyEsIy/AACAPwAAgD+a1Xq9DycevC6HCj57VFe+fp0NvV9ngj8AAIA/AACAP82hi70FM4c+OhtdPvUtHr+0Zoq9S6IFPgAAAAAAAAAAANT+vHtuj7qqFBA5adgQNOdZKblCIie4AACAPwAAgD/Nydw8ccMTu57WGL6SzBk7o5nYO/T0JbwAAIA/AACAP4A7QL3RTbE/WmuivmVdfb6Pm8C8UiNRvgAAAAAAAAAAZhfGPHvUjLqdgmQ2c7OYsLt6LLvl9YG1AACAPwAAgD/NN3A9Osl8P1qGPz5WEXW/JS4qPj2Z7D0AAAAAAAAAAJqe0DwUjIG6+nAtNSJXPDD0lAa6ELlUtAAAgD8AAIA/5skRvq29Lj54YCE/0LAFv9kRD70lGd8+AAAAAAAAAADNmIq7ewqNusvEYzceicQyFFmcOcFegrYAAIA/AACAP+qWhz5zWzI/Di6Xujy1N7++dRg/iX9FvgAAAAAAAAAAAAD2uCloErptMYU88a0MM1QNSbuNnnEzAACAPwAAgD9mxkU66EqxPzdlszwhcHm+Mo+kvLbFuL0AAAAAAAAAAM206zxIV6i6u1CcPe9Guzz6E0c7ULugvQAAgD8AAIA/rdo8vofRlj+gkWa+19MpvyDV2r7DuSi+AAAAAAAAAADNDCi7wzU2ugCuIbWA3/2vrGf0Ok1ZXTQAAIA/AACAP0Ael737/EU/SZkNvr6qbL8TGiy+Y7oWPQAAAAAAAAAAGmjovYxmjD9mJ2S+i8k1v/C+qL5yttS9AAAAAAAAAABzz6Y9rOe5PzT0Az8rE4K9d9ZJut2A4D0AAAAAAAAAAE2IJz2PkjQ5jmqhNQnVEzD7OJ+6Qm26tAAAgD8AAIA/zdjgu+E2irqyzoQ9s+S1Ms3z9zqIH0YyAACAPwAAgD+mhMc9CN3JPQvO4r4rc9e+CcQdvheMw74AAAAAAAAAAOaVJ74wRIQ/PaiQvo5SLL+Wuuy+x+WuvQAAAAAAAAAAqp50vkA15j5qzTs+NZEtv/1G977Aplw+AAAAAAAAAABmM1S9MeemP1/HyL61BQu/y0RIvROmZL4AAAAAAAAAAJrJQrwpSF+630QHM0l5XDCWa1M7LO62swAAgD8AAIA/swxcPUhDg7rNqCu07xyBr3GxDboo/64zAACAPwAAgD+avoi8zxRtvEcuTD4EZ0g8yIAUvXbW1T0AAIA/AACAP4AUuT3JqEU9G2lpvuN3sL5XScu88FY1vgAAAAAAAAAA2id0Pk40Uj+0ARg+D3Mkv7HZDz9FDCM8AAAAAAAAAADNGGw8HzaFu0bMIb6Xoos9r7Khu3weqjoAAIA/AACAPzPzejwKF367sllzPYftgz3vGiu8IJPSPAAAgD8AAIA/ZnYaO1LI57kKddy3PQIYs8tI/zpdJwM3AAAAAAAAgD+27XG+N8o8P/2HbDwTLCa/6ZsHvw1lzz0AAAAAAAAAAAaXH75YrR8/aucBvaCFQb843sS+fKEiPQAAAAAAAAAAgHOBvXs4AT83hIm7RXFUv5i0Br5WiUw8AAAAAAAAAACzapw9g8j7PrOdZz0HLle/EUkKPms6Fj0AAAAAAAAAAAD1tzzXuQG7Cu9/vV42pTy75Lg7GkmOvQAAgD8AAIA/AG/XPfO8LT8Wpw8+s89Jv5dPTj4/a6U8AAAAAAAAAABNvqi96EUTP8K4Urw9XVG/3jxDvlkshzsAAAAAAAAAAGYFrzxcgwG6goeAPdFgaDPNuRO5+kp/sgAAgD8AAIA/M1qAPdfVTTzDqqK+P1iMvo06Er55BC2+AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"
78
  },
79
  "_last_episode_starts": {
80
  ":type:": "<class 'numpy.ndarray'>",
81
+ ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="
82
  },
83
  "_last_original_obs": null,
84
  "_episode_num": 0,
 
87
  "_current_progress_remaining": -0.0027007999999999477,
88
  "ep_info_buffer": {
89
  ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFf2hmadYckCUhpRSlIwBbJRLh4wBdJRHQLZ1PDk2gnN1fZQoaAZoCWgPQwj+ZffkoX5yQJSGlFKUaBVLnWgWR0C2dUKsIVuadX2UKGgGaAloD0MIkGtDxTj9cUCUhpRSlGgVS59oFkdAtnVB9Vmz0HV9lChoBmgJaA9DCNEGYAMiPnNAlIaUUpRoFUu5aBZHQLZ1R3974SJ1fZQoaAZoCWgPQwge+YOBJ79zQJSGlFKUaBVLw2gWR0C2dUdbs4T9dX2UKGgGaAloD0MIamrZWh9Hc0CUhpRSlGgVS8ZoFkdAtnVdC9h7V3V9lChoBmgJaA9DCPMDV3kCOnNAlIaUUpRoFUuxaBZHQLZ1Y/M4cWF1fZQoaAZoCWgPQwgfhIB8yfJxQJSGlFKUaBVLq2gWR0C2dW+xGDtgdX2UKGgGaAloD0MIfh6jPHOvcUCUhpRSlGgVS6poFkdAtnV7voePrHV9lChoBmgJaA9DCCdPWU2XRHBAlIaUUpRoFUuMaBZHQLZ1e18b70p1fZQoaAZoCWgPQwieJcgIaBN0QJSGlFKUaBVLx2gWR0C2dYhg3LmqdX2UKGgGaAloD0MIh2pKso7YcECUhpRSlGgVS6xoFkdAtnWGh0yP/HV9lChoBmgJaA9DCE1Iawx6cXNAlIaUUpRoFUu8aBZHQLZ1jgG8mKJ1fZQoaAZoCWgPQwhvRWKCWkZyQJSGlFKUaBVLl2gWR0C2dYz1schldX2UKGgGaAloD0MIG53zU5xNc0CUhpRSlGgVS9NoFkdAtnWReE7GN3V9lChoBmgJaA9DCA6/m27ZbXNAlIaUUpRoFUu6aBZHQLZ1mAwPAfx1fZQoaAZoCWgPQwhyM9yAz/VxQJSGlFKUaBVLu2gWR0C2dZ+vMbFTdX2UKGgGaAloD0MIoYDtYMRIdECUhpRSlGgVS9ZoFkdAtnWp09yLh3V9lChoBmgJaA9DCN4FSgpsg3FAlIaUUpRoFUu2aBZHQLZ1p7kn1Fp1fZQoaAZoCWgPQwium1JeqytxQJSGlFKUaBVLlmgWR0C2dbMcZLqVdX2UKGgGaAloD0MIAOMZNPSrc0CUhpRSlGgVS6toFkdAtnW7SCvovHV9lChoBmgJaA9DCOI6xhUXT3JAlIaUUpRoFUu3aBZHQLZ1yX3g1m91fZQoaAZoCWgPQwjqQUEpmj1zQJSGlFKUaBVLtmgWR0C2deLEP1+RdX2UKGgGaAloD0MImUUotsJXdECUhpRSlGgVS6toFkdAtnXuIj4YanV9lChoBmgJaA9DCECJz52gWHBAlIaUUpRoFUuWaBZHQLZ18brkbP11fZQoaAZoCWgPQwgiHLPsiYFxQJSGlFKUaBVLqGgWR0C2dfmTHKfWdX2UKGgGaAloD0MIMxe4PNafc0CUhpRSlGgVS7loFkdAtnX+l2vB8HV9lChoBmgJaA9DCJNzYg+tcXBAlIaUUpRoFUudaBZHQLZ1/StvGZN1fZQoaAZoCWgPQwicTUcAdxtzQJSGlFKUaBVLwmgWR0C2dgg4ffXPdX2UKGgGaAloD0MIh6JAn0ixcUCUhpRSlGgVS6toFkdAtnYbDdgv13V9lChoBmgJaA9DCEloy7nUnnBAlIaUUpRoFUuhaBZHQLZ2JiI+GGp1fZQoaAZoCWgPQwjQK556ZNlwQJSGlFKUaBVLk2gWR0C2djhcJMQFdX2UKGgGaAloD0MImx9/aVHmckCUhpRSlGgVS6poFkdAtnY/HYHxBnV9lChoBmgJaA9DCAd7E0Ny73JAlIaUUpRoFUvEaBZHQLZ2RAPuogp1fZQoaAZoCWgPQwhkdavnpDtzQJSGlFKUaBVLtWgWR0C2dkorBj4IdX2UKGgGaAloD0MIjZjZ5/E0cUCUhpRSlGgVS6VoFkdAtnZQ04zabnV9lChoBmgJaA9DCKbTug2q/3JAlIaUUpRoFUvJaBZHQLZ2Vnq3VkN1fZQoaAZoCWgPQwhVF/AyA49xQJSGlFKUaBVLoWgWR0C2dlRLwnYydX2UKGgGaAloD0MIIsSVs/fIc0CUhpRSlGgVS6JoFkdAtnZiWjXWfHV9lChoBmgJaA9DCALYgAhx0nJAlIaUUpRoFUuTaBZHQLZ2aEYfnwJ1fZQoaAZoCWgPQwjvG197ptJzQJSGlFKUaBVLtWgWR0C2dnL/82rGdX2UKGgGaAloD0MIOEpenWMBdECUhpRSlGgVS7RoFkdAtnZ3yAhB7nV9lChoBmgJaA9DCLMpV3hXInNAlIaUUpRoFUu4aBZHQLZ2hVDrqt51fZQoaAZoCWgPQwgPSMK+nUxxQJSGlFKUaBVLpWgWR0C2doPNmlImdX2UKGgGaAloD0MIa2RXWgbRckCUhpRSlGgVS59oFkdAtnaK7rcCYHV9lChoBmgJaA9DCMWPMXetkXJAlIaUUpRoFUuSaBZHQLZ2kLeyiVV1fZQoaAZoCWgPQwgLmSuDKn1yQJSGlFKUaBVLhGgWR0C2dpCnDR+jdX2UKGgGaAloD0MI4SajynCmcUCUhpRSlGgVS55oFkdAtnaO5Xlr/XV9lChoBmgJaA9DCIHNOXjmynFAlIaUUpRoFUulaBZHQLZ2voE0SAZ1fZQoaAZoCWgPQwjHDipxHa9zQJSGlFKUaBVLsWgWR0C2dsIxtYSydX2UKGgGaAloD0MIRZxOshWackCUhpRSlGgVS4VoFkdAtnbB0q6OHXV9lChoBmgJaA9DCCKMn8Z9vXFAlIaUUpRoFUusaBZHQLZ2zjPOY6Z1fZQoaAZoCWgPQwh1c/G3vX1xQJSGlFKUaBVLnmgWR0C2dt7laKUFdX2UKGgGaAloD0MIY3rCEk+PcUCUhpRSlGgVS7BoFkdAtnbl/SYw7HV9lChoBmgJaA9DCHy1oziHcHJAlIaUUpRoFUu3aBZHQLZ27IPsiSt1fZQoaAZoCWgPQwi4sG68u2FxQJSGlFKUaBVLkmgWR0C2duqsuFpPdX2UKGgGaAloD0MI1SZO7vc1ckCUhpRSlGgVS7ZoFkdAtnb4DPnjhnV9lChoBmgJaA9DCMgoz7xcenFAlIaUUpRoFUusaBZHQLZ3Ag3Lmp51fZQoaAZoCWgPQwgAHebLCyxyQJSGlFKUaBVLiWgWR0C2dwhV+7UYdX2UKGgGaAloD0MIqHLaU/K0ckCUhpRSlGgVS7poFkdAtncOrPt2LnV9lChoBmgJaA9DCKBU+3S8+HFAlIaUUpRoFUuqaBZHQLZ3FEJBw/B1fZQoaAZoCWgPQwjcvdwnR6tyQJSGlFKUaBVLrGgWR0C2dxxuCPIXdX2UKGgGaAloD0MIzvxqDhDIcECUhpRSlGgVS5ZoFkdAtnczUnXumnV9lChoBmgJaA9DCPLs8q1PU3JAlIaUUpRoFUuNaBZHQLZ3SStvGZN1fZQoaAZoCWgPQwjoobYN4xhyQJSGlFKUaBVLr2gWR0C2d11u3trsdX2UKGgGaAloD0MIM8NGWb/Sc0CUhpRSlGgVS9JoFkdAtndbfJmuknV9lChoBmgJaA9DCInS3uBL6XJAlIaUUpRoFUuaaBZHQLZ3Y1q33Ht1fZQoaAZoCWgPQwjAPc+fdhx0QJSGlFKUaBVLt2gWR0C2d2Muez2OdX2UKGgGaAloD0MIJAnCFVAbb0CUhpRSlGgVS45oFkdAtndiq1gH/3V9lChoBmgJaA9DCCmwAKaMI3BAlIaUUpRoFUuHaBZHQLZ3YfdRBNV1fZQoaAZoCWgPQwjVeOkmsfVxQJSGlFKUaBVLi2gWR0C2d2iY1He8dX2UKGgGaAloD0MIICi37Xv6ckCUhpRSlGgVS6RoFkdAtnd06bONYXV9lChoBmgJaA9DCCUi/Iug03FAlIaUUpRoFUvZaBZHQLZ3dPgvUSZ1fZQoaAZoCWgPQwgb2ZWW0TpxQJSGlFKUaBVLjWgWR0C2d3Rz/6wddX2UKGgGaAloD0MIXFoNiXvgRkCUhpRSlGgVS2NoFkdAtnd6mhufmXV9lChoBmgJaA9DCJKwbydRiXNAlIaUUpRoFUusaBZHQLZ3hse4kNZ1fZQoaAZoCWgPQwisHjAPmVRzQJSGlFKUaBVLuGgWR0C2d4yR4hUzdX2UKGgGaAloD0MIEw8om3JCc0CUhpRSlGgVS9BoFkdAtneLomoitHV9lChoBmgJaA9DCK4q+65IMXNAlIaUUpRoFUu8aBZHQLZ3k3Roh6l1fZQoaAZoCWgPQwjlRpG1hjtzQJSGlFKUaBVLxWgWR0C2d5LN8ma6dX2UKGgGaAloD0MIqFKzB5qMckCUhpRSlGgVS4loFkdAtnej38GcF3V9lChoBmgJaA9DCIbmOo2003JAlIaUUpRoFUvAaBZHQLZ3qPJaJRB1fZQoaAZoCWgPQwgNcEG2LN5xQJSGlFKUaBVLoWgWR0C2d8AiRnvldX2UKGgGaAloD0MIZvUOt0MUcECUhpRSlGgVS5doFkdAtnfbmbLEDXV9lChoBmgJaA9DCGGqmbWU7XBAlIaUUpRoFUujaBZHQLZ34rTH80l1fZQoaAZoCWgPQwhlGeJYF0lxQJSGlFKUaBVLtGgWR0C2d+ffO2RadX2UKGgGaAloD0MIJ4i6D0DbckCUhpRSlGgVS7loFkdAtnfvjFQ2uXV9lChoBmgJaA9DCKWEYFW9FXNAlIaUUpRoFUu6aBZHQLZ37r1uivh1fZQoaAZoCWgPQwig3oyab0txQJSGlFKUaBVLrmgWR0C2d+2vr4WUdX2UKGgGaAloD0MILA/SU+S3ckCUhpRSlGgVS8JoFkdAtnf7t3OfNHV9lChoBmgJaA9DCEnYt5MIKHJAlIaUUpRoFUu2aBZHQLZ3+2Pkq+d1fZQoaAZoCWgPQwioNjgRPe9wQJSGlFKUaBVLmWgWR0C2d/pflZHNdX2UKGgGaAloD0MIuM1UiEe3ckCUhpRSlGgVS7BoFkdAtngHT+ee4HV9lChoBmgJaA9DCMgljjzQ7nBAlIaUUpRoFUuuaBZHQLZ4Bhh6Skl1fZQoaAZoCWgPQwjnxYmvttFyQJSGlFKUaBVL3GgWR0C2eA4atLcsdX2UKGgGaAloD0MIhbUxdkLVc0CUhpRSlGgVS8VoFkdAtngL0UXYUXV9lChoBmgJaA9DCDNOQ1ThuHJAlIaUUpRoFUu4aBZHQLZ4E14xDb91fZQoaAZoCWgPQwh3g2itaHVxQJSGlFKUaBVLqmgWR0C2eBK2a2F4dX2UKGgGaAloD0MIXJGYoIbackCUhpRSlGgVS75oFkdAtngq1PWQOnV9lChoBmgJaA9DCL1tpkL833JAlIaUUpRoFUu9aBZHQLZ4L9t/Fzd1ZS4="
91
  },
92
  "ep_success_buffer": {
93
  ":type:": "<class 'collections.deque'>",
 
100
  "ent_coef": 0.01,
101
  "vf_coef": 0.5,
102
  "max_grad_norm": 0.5,
103
+ "batch_size": 1024,
104
  "n_epochs": 4,
105
  "clip_range": {
106
  ":type:": "<class 'function'>",
thicc-ppo-LunarLander-rc/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:db05929f2a8518330d89dd7589c997b4d9988427ca32cc22ff14905d5e5d8c53
3
- size 150673
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72bbd71c1d91fddae42044cfb72ba2b19453c02ef63e97bcb514e7a6c7e93bdc
3
+ size 185093
thicc-ppo-LunarLander-rc/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1aacbc4476e1cc01ea04fab77c63060083129202766de9d1d8c19c476c001bb5
3
- size 76283
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c35718a809d03f2b559a0464d609b25df1d81b9d2e5f0125a43362c301e6509
3
+ size 93557