File size: 23,279 Bytes
db26c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import os
import sys
import math
import copy
import time
import queue
import inspect
import torch
import numpy as np
import torch.nn.functional as F
import torch.distributed as dist

from .agent import Agent, parse_nn_args
from .utils import repeat, get_default_device, cutime_stats
from .variable import TaskDemandNow

from torch.nn.utils import clip_grad_norm_, parameters_to_vector, vector_to_parameters
from torch.utils.data import Dataset, IterableDataset, DataLoader
from torch.optim.lr_scheduler import MultiStepLR


class Problem(object):
    def __init__(self, isbatch=False):
        self.isbatch = isbatch
        self.features = []
        self.environment = None

    def pin_memory(self):
        for k, v in self.feats.items():
            self.feats[k] = v.pin_memory()
        return self

    def __getattr__(self, name):
        if name not in ('solution'):
            raise AttributeError()
        return self.feats.get(name)


class Solution(object):
    def __init__(self, cost=None):
        self.cost = cost
        self.worker_task_sequence = None


class WrapDataset(Dataset):
    def __init__(self, dataset, solver):
        self._dataset = [solver.to_batch(p) for p in dataset]

    def __getitem__(self, index):
        return self._dataset[index]

    def __len__(self):
        return len(self._dataset)


class WrapIterator:
    def __init__(self, iterator, solver):
        self._iterator = iterator
        self._solver = solver

    def __next__(self):
        p = next(self._iterator)
        p = self._solver.to_batch(p, False)
        return p


class WrapIterableDataset(IterableDataset):
    def __init__(self, dataset, solver):
        self._dataset = dataset
        self._solver = solver

    def __iter__(self):
        return WrapIterator(iter(self._dataset), self._solver)


class CyclicIterator:
    def __init__(self, iterable):
        self._iterable = iterable
        self._iterator = iter(iterable)

    def __iter__(self):
        return self

    def __next__(self):
        try:
            return next(self._iterator)
        except StopIteration:
            self._iterator = iter(self._iterable)
            return next(self._iterator)


class BufferedIterator:
    def __init__(self, iterator, size, reuse):
        self._iterator = iterator
        self._reuse = reuse
        self._queue = queue.Queue(size)
        self._buffer = []
        self._iter_step = 0

    def __next__(self):
        if not self._queue.full() or self._iter_step % self._reuse == 0:
            problem = next(self._iterator)
            if self._queue.full():
                index = self._queue.get()
                self._buffer[index] = problem
            else:
                index = len(self._buffer)
                self._buffer.append(problem)
            self._queue.put(index)
        self._iter_step += 1
        index = torch.randint(0, len(self._buffer), (1,)).item()
        return self._buffer[index]


class Solver(object):
    def __init__(self, device=None, nn_args=None):

        if device is None:
            self.device = get_default_device()
        elif device == 'cuda':
            self.device = get_default_device()
            assert self.device.type == 'cuda', 'no cuda device available!'
        else:
            self.device = torch.device(device)

        if nn_args is None:
            nn_args = {}
        self.nn_args = nn_args

        self.agent = None

    def parse_nn_args(self, problem):
        parse_nn_args(problem, self.nn_args)

    def new_agent(self):
        return Agent(self.nn_args)

    def train(self, agent_filename, train_dataset, valid_dataset, **kwargs):
        if dist.is_initialized():
            torch.manual_seed(torch.initial_seed() + dist.get_rank() * 20000)

        train_dataset_workers = kwargs.pop('train_dataset_workers', 1)
        train_dataset_buffers = kwargs.pop('train_dataset_buffers', 2)
        valid_dataset_workers = kwargs.pop('valid_dataset_workers', 1)
        valid_dataset_buffers = kwargs.pop('valid_dataset_buffers', 2)

        train_dataset = self.wrap_dataset(train_dataset, train_dataset_workers,
                                          train_dataset_buffers, torch.initial_seed() + 1)
        valid_dataset = self.wrap_dataset(valid_dataset, valid_dataset_workers,
                                          valid_dataset_buffers, torch.initial_seed() + 10001)

        if self.device.type == 'cuda':
            with torch.cuda.device(cuda_or_none(self.device)):
                self.do_train(agent_filename, train_dataset, valid_dataset, **kwargs)
        else:
            self.do_train(agent_filename, train_dataset, valid_dataset, **kwargs)

    def do_train(self, agent_filename, train_dataset, valid_dataset, reuse_buffer=0, reuse_times=1, on_policy=True,
                 advpow=1, batch_size=512, topk_size=1, init_lr=0.0001, sched_lr=(int(1e10),), gamma_lr=0.5,
                 warmup_steps=100, log_steps=-1, optim_steps=1, valid_steps=100, max_steps=int(1e10), memopt=1):

        for arg in inspect.getfullargspec(self.do_train)[0][1:]:
            if arg not in ('train_dataset', 'valid_dataset'):
                print("train_args: {} = {}".format(arg, locals()[arg]))

        if log_steps < 0:
            log_steps = valid_steps

        train_dataset = CyclicIterator(train_dataset)
        if reuse_buffer > 0:
            train_dataset = BufferedIterator(train_dataset, reuse_buffer, reuse_times)

        valid_dataset = list(valid_dataset)

        if dist.is_initialized() and dist.get_rank() != 0:
            dist.barrier()

        if agent_filename is not None and os.path.exists(agent_filename):
            saved_state = torch.load(agent_filename, map_location='cpu')
            self.nn_args = saved_state['nn_args']
        else:
            saved_state = None
            self.parse_nn_args(valid_dataset[0])

        step = 0
        start_step = 0
        self.agent = self.new_agent().train()
        self.agent.to(self.device)
        self.print_nn_args()

        best_agent = copy.deepcopy(self.agent).eval()
        min_valid_cost = math.inf

        optimizer = torch.optim.Adam(self.agent.parameters(), lr=init_lr)
        scheduler = MultiStepLR(optimizer, milestones=sched_lr, gamma=gamma_lr)

        def do_save_state(rng_state, cuda_rng_state):
            if agent_filename is not None:
                save_data = {'step': step, 'rng_state': rng_state}
                if cuda_rng_state is not None:
                    save_data['cuda_rng_state'] = cuda_rng_state
                save_data['nn_args'] = self.agent.nn_args_dict()
                save_data['agent_state'] = self.agent.state_dict()
                save_data['best_agent_state'] = best_agent.state_dict()
                save_data['optimizer_state'] = optimizer.state_dict()
                save_data['scheduler_state'] = scheduler.state_dict()
                torch.save(save_data, agent_filename)

        def valid_sched_save(step):
            if dist.is_initialized():
                params = parameters_to_vector(self.agent.parameters())
                params_clone = params.clone()
                dist.broadcast(params_clone, 0)
                assert torch.all(params == params_clone)

            rng_state = torch.get_rng_state()
            cuda_rng_state = None
            if self.device.type == 'cuda':
                cuda_rng_state = torch.cuda.get_rng_state(self.device)

            print("{} - step={}, validate...".format(time.strftime("%Y-%m-%d %H:%M:%S"), step))
            sys.stdout.flush()

            if self.device.type == 'cuda':
                torch.cuda.synchronize(self.device)
            start_time = time.time()
            valid_result = self.validate(valid_dataset, batch_size)
            avg_cost1, avg_cost2, avg_feasible = valid_result
            if self.device.type == 'cuda':
                torch.cuda.synchronize(self.device)

            duration = time.time() - start_time

            if step > 0:
                scheduler.step()

            if not dist.is_initialized() or dist.get_rank() == 0:
                do_save_state(rng_state, cuda_rng_state)

            strftime = time.strftime("%Y-%m-%d %H:%M:%S")
            print("{} - step={}, cost=[{:.6g}, {:.6g}], feasible={:.0%}".format(
                strftime, step, avg_cost1, avg_cost2, avg_feasible))
            print("{} - step={}, min_valid_cost={:.6g}, time={:.3f}s".format(
                strftime, step, min(min_valid_cost, avg_cost2), duration))
            print("---------------------------------------------------------------------------------------")
            sys.stdout.flush()
            return avg_cost2

        if saved_state is not None:
            start_step = saved_state['step']

            if not dist.is_initialized() or dist.get_rank() == 0:
                torch.set_rng_state(saved_state['rng_state'])
                if torch.cuda.is_available():
                    torch.cuda.set_rng_state(saved_state['cuda_rng_state'], self.device)

            best_agent.load_state_dict(saved_state['best_agent_state'])
            self.agent.load_state_dict(saved_state['best_agent_state'])

            # if 'agent_state' in saved_state:
            #    self.agent.load_state_dict(saved_state['agent_state'])
            # else:
            #    self.agent.load_state_dict(saved_state['best_agent_state'])

            if 'optimizer_state' in saved_state:
                optimizer.load_state_dict(saved_state['optimizer_state'])
            if 'scheduler_state' in saved_state:
                scheduler.load_state_dict(saved_state['scheduler_state'])
        else:
            if dist.is_initialized() and dist.get_rank() == 0:
                rng_state = torch.get_rng_state()
                cuda_rng_state = None
                if self.device.type == 'cuda':
                    cuda_rng_state = torch.cuda.get_rng_state(self.device)
                do_save_state(rng_state, cuda_rng_state)

        if dist.is_initialized() and dist.get_rank() == 0:
            dist.barrier()

        for step in range(start_step, max_steps):
            if step % valid_steps == 0:
                valid_cost = valid_sched_save(step)
                if valid_cost < min_valid_cost:
                    best_agent.load_state_dict(self.agent.state_dict())
                    min_valid_cost = valid_cost

            start_time = time.time()

            # problem
            with torch.no_grad():
                problem = next(train_dataset)
                if step < warmup_steps:
                    batch_size_now = batch_size // 2
                else:
                    batch_size_now = batch_size
                problem = self.to_device(problem)

            if not on_policy:
                data_agent = best_agent
            else:
                data_agent = self.agent

            data_agent.eval()

            # solution
            if topk_size > 1:
                with torch.no_grad():
                    batch_size_topk = batch_size_now * topk_size
                    env, logp = data_agent(problem, batch_size_topk)
                    cost = env.cost().sum(1).float()
                    solution = env.worker_task_sequence()

                    NP = problem.batch_size
                    NK = batch_size_now // NP
                    NS = solution.size(1)

                    cost = cost.view(NP, -1)
                    cost, kidx = cost.topk(NK, 1, False, False)
                    cost = cost.view(-1)
                    kidx = kidx[:, :, None, None].expand(-1, -1, NS, 3)
                    solution = solution.view(NP, -1, NS, 3)
                    solution = solution.gather(1, kidx).view(-1, NS, 3)

            elif not on_policy:
                with torch.no_grad():
                    env, logp = data_agent(problem, batch_size_now)
                    cost = env.cost().sum(1).float()
                    solution = env.worker_task_sequence()
            else:
                self.agent.train()
                env, logp = self.agent(problem, batch_size_now, memopt=memopt)
                cost = env.cost().sum(1).float()
                solution = env.worker_task_sequence()

            self.agent.train()

            # advantage
            with torch.no_grad():
                NP = problem.batch_size
                if topk_size > 1:
                    baseline = cost.view(NP, -1).max(1)[0]
                else:
                    baseline = cost.view(NP, -1).mean(1)
                baseline = repeat(baseline, cost.size(0) // NP)
                adv = (cost - baseline)[:, None]
                adv_norm = adv.norm()
                if adv_norm > 0:
                    adv = adv / adv.norm() * adv.size(0)
                    adv = adv.sign() * adv.abs().pow(advpow)

            # backward
            if topk_size > 1 or not on_policy:
                env, logp = self.agent(problem, batch_size_now, solution=solution, memopt=memopt)

            loss = adv * logp
            loss = loss.mean()
            loss.backward()

            if step % optim_steps == 0:
                if dist.is_initialized():
                    params = filter(lambda a: a.grad is not None, self.agent.parameters())
                    grad_list = [param.grad for param in params]
                    grad_vector = parameters_to_vector(grad_list)
                    dist.all_reduce(grad_vector, op=dist.ReduceOp.SUM)
                    vector_to_parameters(grad_vector, grad_list)

                grad_norm = clip_grad_norm_(self.agent.parameters(), 1)
                optimizer.step()
                optimizer.zero_grad()

            if step % log_steps == 0:
                strftime = time.strftime("%Y-%m-%d %H:%M:%S")
                lr = optimizer.param_groups[0]['lr']
                duration = time.time() - start_time
                with torch.no_grad():
                    p = logp.to(torch.float64).sum(1).exp().mean()
                print("{} - step={}, grad={:.6g}, lr={:.6g}, p={:.6g}".format(
                    strftime, step, grad_norm, lr, p))

                print("{} - step={}, cost={:.6g}, time={:.3f}s".format(strftime, step, cost.mean(), duration))
                print("---------------------------------------------------------------------------------------")
                sys.stdout.flush()

        valid_sched_save(step)

    def solve(self, problem, greedy=False, batch_size=512):
        if self.device.type == 'cuda':
            with torch.cuda.device(cuda_or_none(self.device)):
                return self.do_solve(problem, greedy, batch_size)
        else:
            return self.do_solve(problem, greedy, batch_size)

    def do_solve(self, problem, greedy, batch_size):
        isbatch = problem.isbatch
        problem = self.to_batch(problem)
        problem = self.to_device(problem)

        if self.agent is None:
            self.parse_nn_args(problem)
            self.agent = self.new_agent()
            self.agent.to(self.device)

        self.agent.eval()

        with torch.no_grad():
            env, prob = self.agent(problem, batch_size, greedy, problem.solution)

        NP = problem.batch_size
        NR = prob.size(0) // NP

        prob = prob.view(NP, NR, -1)
        cost = env.cost().sum(1).view(NP, NR)
        feasible = env.feasible().view(NP, NR)
        size = list(env.worker_task_sequence().size())
        size = [NP, NR] + size[1:]
        worker_task_sequence = env.worker_task_sequence().view(size)

        p_index = torch.arange(NP)
        base_cost = cost.max() + 1
        cost[~feasible] += base_cost
        cost, s_index = cost.min(1)
        feasible = feasible[p_index, s_index]
        cost[~feasible] -= base_cost
        probability = prob[p_index, s_index].exp()
        worker_task_sequence = worker_task_sequence[p_index, s_index]

        if isbatch:
            solution = Solution(cost)
            solution.feasible = feasible
            solution.probability = probability
            solution.worker_task_sequence = worker_task_sequence
        else:
            solution = Solution(cost.item())
            solution.feasible = feasible.item()
            solution.probability = probability.squeeze(0)
            solution.worker_task_sequence = worker_task_sequence.squeeze(0)

        return solution

    def load_agent(self, filename, strict=True):
        if self.device.type == 'cuda':
            with torch.cuda.device(cuda_or_none(self.device)):
                self.do_load_agent(filename, strict)
        else:
            self.do_load_agent(filename, strict)

    def do_load_agent(self, filename, strict=True):
        saved_state = torch.load(filename, map_location='cpu')
        self.nn_args = saved_state['nn_args']

        self.agent = self.new_agent()
        self.agent.to(self.device)
        self.agent.load_state_dict(saved_state['best_agent_state'], strict)
        self.print_nn_args()

    def to_batch(self, problem, pin_memory=True):
        assert not hasattr(problem, 'feats')

        NW = 1
        NT = 1
        NP = 1
        isbatch = problem.isbatch
        for k, v in problem.__dict__.items():
            if k.startswith("worker_"):
                NW = len(v[0]) if isbatch else len(v)
            elif k.startswith("task_"):
                NP = len(v) if isbatch else 1
                NT = len(v[0]) if isbatch else len(v)
        NWW = NW * 2

        new_problem = Problem(True)
        new_problem.feats = {}
        new_problem.device = 'cpu'

        new_problem.batch_size = NP
        new_problem.worker_num = NW
        new_problem.task_num = NT

        new_problem.features = problem.features

        if type(self) == Solver:
            new_problem.variables = problem.variables
            new_problem.constraint = problem.constraint
            new_problem.objective = problem.objective
            new_problem.environment = problem.environment
        else:
            new_problem.variables = []
            new_problem.constraints = problem.constraints
            new_problem.oa_estimate_tasks = problem.oa_estimate_tasks
            new_problem.oa_multiple_steps = problem.oa_multiple_steps

        edge_size_list = ((NWW + NT, NWW + NT), (NW + NT, NW + NT))

        def check_size(f, k, v):
            assert f, "size error, feature: {}, size: {}".format(k, tuple(v.size()))

        for k, v in problem.__dict__.items():
            if k == 'solution' and v is not None:
                v = to_tensor(k, v, isbatch)
                check_size(v.dim() == 3 and v.size(-1) == 3, k, v)
            elif k.startswith("worker_task_"):
                v = to_tensor(k, v, isbatch)
                check_size(v.dim() in (3, 4) and v.size()[1:3] == (NW, NT), k, v)
            elif k.startswith("worker_"):
                v = to_tensor(k, v, isbatch)
                check_size(v.dim() in (2, 3) and v.size(1) == NW, k, v)
            elif k.startswith("task_"):
                v = to_tensor(k, v, isbatch)
                check_size(v.dim() in (2, 3) and v.size(1) == NT, k, v)
            elif k.endswith("_matrix"):
                v = to_tensor(k, v, isbatch)
                check_size(v.dim() in (3, 4) and v.size()[1:3] in edge_size_list, k, v)
                if v.size()[1:3] == (NW + NT, NW + NT):
                    worker_index = torch.arange(NW)
                    task_index = torch.arange(NT) + NW
                    index = torch.cat([worker_index, worker_index, task_index])
                    index1 = index[:, None]
                    index2 = index[None, :]
                    v = v[:, index1, index2]
            elif isinstance(v, np.ndarray):
                v = torch.tensor(v)

            if isinstance(v, torch.Tensor):
                new_problem.feats[k] = v

        if pin_memory and self.device.type == 'cuda':
            new_problem.pin_memory()

        return new_problem

    def to_device(self, problem):

        assert hasattr(problem, 'feats')

        new_problem = copy.copy(problem)
        new_problem.device = self.device
        new_problem.feats = {}

        non_blocking = self.device.type == 'cuda'
        for k, v in problem.feats.items():
            v = v.to(self.device, non_blocking=non_blocking)
            new_problem.feats[k] = v

        return new_problem

    def validate(self, problem_list, batch_size):
        self.agent.eval()
        with torch.no_grad():
            valid_result = self.do_validate(problem_list, batch_size)

        self.agent.train()
        return valid_result

    def do_validate(self, problem_list, batch_size):
        total_cost1 = 0
        total_cost2 = 0
        total_feasible = 0
        total_problem = 0
        start_time = time.time()
        for problem in problem_list:
            problem = self.to_device(problem)
            env, _, = self.agent(problem, batch_size)

            NP = problem.batch_size
            cost = env.cost().sum(1).view(NP, -1)
            cost1, _ = cost.min(1)
            cost2 = cost.mean(1)
            feasible = env.feasible().view(NP, -1)
            feasible = torch.any(feasible, 1)

            total_cost1 += cost1.sum().item()
            total_cost2 += cost2.sum().item()
            total_feasible += feasible.int().sum().item()
            total_problem += NP

        if dist.is_initialized():
            data = [total_cost1, total_cost2, total_feasible, total_problem]
            data = torch.tensor(data, device=self.device)
            dist.all_reduce(data, op=dist.ReduceOp.SUM)
            total_cost1, total_cost2, total_feasible, total_problem = data.tolist()

        avg_cost1 = total_cost1 / total_problem
        avg_cost2 = total_cost2 / total_problem
        avg_feasible = total_feasible / total_problem

        return avg_cost1, avg_cost2, avg_feasible

    def wrap_dataset(self, dataset, workers, buffers, seed):
        if isinstance(dataset, IterableDataset):
            dataset = WrapIterableDataset(dataset, self)
            dataset = DataLoader(dataset, batch_size=None, pin_memory=True,
                                 num_workers=workers, prefetch_factor=buffers,
                                 worker_init_fn=lambda worker_id: torch.manual_seed(seed + worker_id))
        else:
            if self.device.type == 'cuda':
                with torch.cuda.device(cuda_or_none(self.device)):
                    dataset = WrapDataset(dataset, self)
                    dataset = DataLoader(dataset, batch_size=None, pin_memory=True, shuffle=True)
            else:
                dataset = WrapDataset(dataset, self)
                dataset = DataLoader(dataset, batch_size=None, pin_memory=True, shuffle=True)

        return dataset

    def print_nn_args(self):
        for key, value in self.nn_args.items():
            if type(value) in [int, float, str, bool]:
                print("nn_args: {} = {}".format(key, value))
        sys.stdout.flush()


def to_tensor(key, value, isbatch):
    if isinstance(value, torch.Tensor):
        tensor = value.to('cpu')
    else:
        tensor = torch.tensor(value, device='cpu')

    if not isbatch:
        tensor = tensor[None]

    return tensor


def cuda_or_none(device):
    return device if device.type == 'cuda' else None