Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.17 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b1ad3244e11a4aeb24571c40a7a9a969db3047bee561c1b85176cd7016d6ad4
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c13644171c0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c13643f8f40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1693571821596982777,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8rqIPohAnzqBzts+df0QvyePzT62yaY+UOgPv0qk4L4EQKw+8rqIPohAnzqBzts+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4qTEv6qusz/c38W/7yewvzvbjT5KWLo/KSSlv3LHk792yog/GRGdvxlcLr6iTqW9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyuog+iECfOoHO2z7cdfM+6U6OutuJwT51/RC/J4/NPrbJpj5eBlS//vGsP+eGWT9Q6A+/SqTgvgRArD4ti1S/nBzVv6fmYD/yuog+iECfOoHO2z7cdfM+6U6OutuJwT6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.26705128 0.001215 0.42930987]\n [-0.56636745 0.4014828 0.32575768]\n [-0.56213856 -0.43875343 0.3364259 ]\n [ 0.26705128 0.001215 0.42930987]]",
|
34 |
+
"desired_goal": "[[-1.5362818 1.4037678 -1.5458941 ]\n [-1.3762187 0.27706322 1.4558194 ]\n [-1.290166 -1.1545241 1.0686786 ]\n [-1.2270843 -0.1702732 -0.08071639]]",
|
35 |
+
"observation": "[[ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]\n [-5.6636745e-01 4.0148279e-01 3.2575768e-01 -8.2822216e-01\n 1.3511350e+00 8.4971470e-01]\n [-5.6213856e-01 -4.3875343e-01 3.3642590e-01 -8.3024865e-01\n -1.6649356e+00 8.7851948e-01]\n [ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/MvbvN9sD74Ke9M9kGmAPAUn5z3D4JA+qN4KPrmcnb2zM9U8HgO+PY3+srznao4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.02683067 -0.14006375 0.10326202]\n [ 0.01567534 0.11286739 0.2829648 ]\n [ 0.13561499 -0.07695908 0.02602563]\n [ 0.09277938 -0.02184989 0.27815935]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8f3JxNqQBCMAWyUSwOMAXSUR0CkIndrwe/6dX2UKGgGR7/UUbDMvAXVaAdLA2gIR0CkIgCTt9hJdX2UKGgGR7+5jDsMRYigaAdLAmgIR0CkIcPluFYddX2UKGgGR7/RMfzSThYOaAdLA2gIR0CkIkBCD28JdX2UKGgGR7/ROskpqh11aAdLA2gIR0CkIoNLcsUZdX2UKGgGR7+40j1PFefJaAdLAmgIR0CkIktz0Yj0dX2UKGgGR7/FD+irT6SDaAdLA2gIR0CkIg/jS5RTdX2UKGgGR7/PT/hl18suaAdLA2gIR0CkIdNwR5C4dX2UKGgGR7/KqjrRjSXuaAdLA2gIR0CkIpJpFkQPdX2UKGgGR7/DkWhysCDFaAdLAmgIR0CkIhfpD/lydX2UKGgGR7/SoNd7fHghaAdLA2gIR0CkIld5prULdX2UKGgGR7/QfHggow23aAdLA2gIR0CkId76P8yfdX2UKGgGR7/AvZAY51eTaAdLAmgIR0CkIppOerdWdX2UKGgGR7/IVGkN4JNTaAdLA2gIR0CkIiWi+L3sdX2UKGgGR7/GvK2a2F37aAdLAmgIR0CkIej2JzkqdX2UKGgGR7/NGvwEyLydaAdLA2gIR0CkImXVCojwdX2UKGgGR7+e9Jz1bqyGaAdLAWgIR0CkIe2QwK0EdX2UKGgGR7/O8HObAk9maAdLA2gIR0CkIqjkdV/+dX2UKGgGR7+ZTAFgUlAvaAdLAWgIR0CkIqzR6WxAdX2UKGgGR7/LdNWU8mrsaAdLA2gIR0CkInIjGDL9dX2UKGgGR7/eK8tf5ULlaAdLBGgIR0CkIjaciGFjdX2UKGgGR7/ONT987ZFoaAdLA2gIR0CkIfn4XXRPdX2UKGgGR7/Ssyi22G7BaAdLA2gIR0CkIrvjn3cpdX2UKGgGR7+7WEsasIVuaAdLAmgIR0CkIn03fhuPdX2UKGgGR7/KNvwVj7Q+aAdLA2gIR0CkIkY0EX+EdX2UKGgGR7+5FYuCf6GhaAdLAmgIR0CkIsUpmVZ+dX2UKGgGR7+3cRDkU9IPaAdLAmgIR0CkIoaFmFrVdX2UKGgGR7/UKgIyCWeIaAdLBGgIR0CkIg5LqUu+dX2UKGgGR7+2zJIUahpQaAdLAmgIR0CkIk80+C9RdX2UKGgGR7/C6RQrMC9zaAdLAmgIR0CkIpEAPuohdX2UKGgGR7/JD1oQFs55aAdLA2gIR0CkItPM8ox6dX2UKGgGR7+ektVaOgg6aAdLAWgIR0CkItkHD766dX2UKGgGR7+9m7J4jbBXaAdLAmgIR0CkIpqkVN5/dX2UKGgGR7/QUILPUrkKaAdLA2gIR0CkIl8Nx2jgdX2UKGgGR7/V/9YOlO45aAdLBGgIR0CkIiJcX3xndX2UKGgGR7/RbPQfIS13aAdLA2gIR0CkIucoYvWZdX2UKGgGR7/JjCpFTefqaAdLA2gIR0CkIqiJoCdSdX2UKGgGR7/O9g4OtnwoaAdLA2gIR0CkImznied1dX2UKGgGR7/QP/aQFLWaaAdLA2gIR0CkIjA6U7jldX2UKGgGR7+x2GIsRQJpaAdLAmgIR0CkIrCb+cYqdX2UKGgGR7/JvUjLSuyNaAdLA2gIR0CkIvODjBEbdX2UKGgGR7/QzJ6po9LYaAdLA2gIR0CkInl41P30dX2UKGgGR7/TetSydFvyaAdLA2gIR0CkIjzZg5R1dX2UKGgGR7+4Iv8IiTt+aAdLAmgIR0CkIrlvAGjcdX2UKGgGR7/Un0kGA09AaAdLA2gIR0CkIwJqREF4dX2UKGgGR7/Srk8zQ/oraAdLA2gIR0CkIogt4A0bdX2UKGgGR7/QXtShrWRSaAdLA2gIR0CkIkudoWYXdX2UKGgGR7/bJDmbLEDRaAdLBGgIR0CkIsyRr8BNdX2UKGgGR7/H3PAwfyPNaAdLA2gIR0CkIpUWdmQKdX2UKGgGR7/NImw7kn1GaAdLA2gIR0CkIlhgmZ3LdX2UKGgGR7/Q5yEL6UJOaAdLBGgIR0CkIxXVsk6cdX2UKGgGR7+3029+PRzBaAdLAmgIR0CkImKXF98adX2UKGgGR7/K3EyckMTfaAdLA2gIR0CkIqNKAavSdX2UKGgGR7/PSYw7DEWJaAdLA2gIR0CkIyHLRrrPdX2UKGgGR7/ayKNyYG+saAdLBWgIR0CkIuMYMvytdX2UKGgGR7+UxqO938oAaAdLAWgIR0CkIyYq5LAYdX2UKGgGR7/CI5YHPeHjaAdLAmgIR0CkIqupsGgSdX2UKGgGR7/T76pHZsbeaAdLA2gIR0CkIm8LSeAedX2UKGgGR7+TlLeyiVSoaAdLAWgIR0CkIyyUs4DLdX2UKGgGR7/SQcPvrnklaAdLA2gIR0CkIrnjQzDXdX2UKGgGR7/NnlGPPszEaAdLA2gIR0CkIn0/W1+idX2UKGgGR7/RFspG4I8haAdLA2gIR0CkIzihWYF8dX2UKGgGR7/frPdEb5uZaAdLBWgIR0CkIvqB3A2ydX2UKGgGR7/G9Mbm2b5NaAdLA2gIR0CkIskA5q/NdX2UKGgGR7/LilSCOFQEaAdLA2gIR0CkIoxlYlpodX2UKGgGR7/Pgssg+yJLaAdLA2gIR0CkI0fVy3kQdX2UKGgGR7/Sl05lvqC6aAdLA2gIR0CkIwkhq0tzdX2UKGgGR7+d69kBjnV5aAdLAWgIR0CkIw1e8f3fdX2UKGgGR7/CRnvlU6xPaAdLAmgIR0CkItH9ehPCdX2UKGgGR7+9YHPeHi3oaAdLAmgIR0CkIpVc2R7rdX2UKGgGR7/HjBEa2nbZaAdLA2gIR0CkI1THsC1adX2UKGgGR7++TibUgB91aAdLAmgIR0CkIxYqPOpsdX2UKGgGR7+lAu7HyVfNaAdLAWgIR0CkI1tcGC7LdX2UKGgGR7/Rmmce8wpOaAdLA2gIR0CkIqRnOB1+dX2UKGgGR7/X7TUiILw4aAdLBGgIR0CkIuVjI7vHdX2UKGgGR7/Fn6l+EytWaAdLA2gIR0CkIyUornTzdX2UKGgGR7/UWlMyrPt2aAdLA2gIR0CkI2gTZg5SdX2UKGgGR7/T3Dej2zv7aAdLA2gIR0CkIrEIomXxdX2UKGgGR7/cFJxvNu+AaAdLBGgIR0CkIvhVdX1bdX2UKGgGR7/bKbayrxRVaAdLBGgIR0CkIzgQYk3TdX2UKGgGR7/OIKtxMnJDaAdLA2gIR0CkIr/rSmZWdX2UKGgGR7/ZbBXS0BwNaAdLBGgIR0CkI3s4DLbIdX2UKGgGR7/FOzIFNcnmaAdLA2gIR0CkIwSHmA9WdX2UKGgGR7/Qj+aScLBsaAdLA2gIR0CkI0Q482aVdX2UKGgGR7/Q2PDHfdhzaAdLA2gIR0CkIsvIGQjmdX2UKGgGR7/P0RODaoMsaAdLA2gIR0CkI4lMyrPudX2UKGgGR7/QmKqGUOd5aAdLA2gIR0CkIxKCg9NfdX2UKGgGR7+/xtpEhJRPaAdLAmgIR0CkI5EQf6oEdX2UKGgGR7/LhegL7XQMaAdLA2gIR0CkI1JVbRnfdX2UKGgGR7/Ee6I3zcynaAdLA2gIR0CkItpFCswMdX2UKGgGR7+6PYFqzqrzaAdLAmgIR0CkIxxO1v2odX2UKGgGR7/PN0vGp++eaAdLA2gIR0CkI2L5AQg+dX2UKGgGR7+zWGyon8baaAdLAmgIR0CkIyeLvTgEdX2UKGgGR7/S7IT4+KTCaAdLA2gIR0CkIuspG4I9dX2UKGgGR7/XCkXUH6dlaAdLBGgIR0CkI6bo0Q9SdX2UKGgGR7/AEal1r6+GaAdLAmgIR0CkIvPJq7AddX2UKGgGR7/LzYmLLpzLaAdLA2gIR0CkI3BqKxcFdX2UKGgGR7/JNO/L1VYIaAdLA2gIR0CkIzVJDmbLdX2UKGgGR7/LKHwgDA8CaAdLA2gIR0CkI7P3BYV7dX2UKGgGR7++b5M10knkaAdLAmgIR0CkIvzH0btJdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17b9ea9e305eab8c96086addf048ddc88699d54bf61ef566018681f1a3a39254
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6f822cdf9a0851a441174b01e210f741d66d712e5790a35a61d3b153dcabb0c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c13644171c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c13643f8f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693571821596982777, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8rqIPohAnzqBzts+df0QvyePzT62yaY+UOgPv0qk4L4EQKw+8rqIPohAnzqBzts+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4qTEv6qusz/c38W/7yewvzvbjT5KWLo/KSSlv3LHk792yog/GRGdvxlcLr6iTqW9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyuog+iECfOoHO2z7cdfM+6U6OutuJwT51/RC/J4/NPrbJpj5eBlS//vGsP+eGWT9Q6A+/SqTgvgRArD4ti1S/nBzVv6fmYD/yuog+iECfOoHO2z7cdfM+6U6OutuJwT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.26705128 0.001215 0.42930987]\n [-0.56636745 0.4014828 0.32575768]\n [-0.56213856 -0.43875343 0.3364259 ]\n [ 0.26705128 0.001215 0.42930987]]", "desired_goal": "[[-1.5362818 1.4037678 -1.5458941 ]\n [-1.3762187 0.27706322 1.4558194 ]\n [-1.290166 -1.1545241 1.0686786 ]\n [-1.2270843 -0.1702732 -0.08071639]]", "observation": "[[ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]\n [-5.6636745e-01 4.0148279e-01 3.2575768e-01 -8.2822216e-01\n 1.3511350e+00 8.4971470e-01]\n [-5.6213856e-01 -4.3875343e-01 3.3642590e-01 -8.3024865e-01\n -1.6649356e+00 8.7851948e-01]\n [ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/MvbvN9sD74Ke9M9kGmAPAUn5z3D4JA+qN4KPrmcnb2zM9U8HgO+PY3+srznao4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02683067 -0.14006375 0.10326202]\n [ 0.01567534 0.11286739 0.2829648 ]\n [ 0.13561499 -0.07695908 0.02602563]\n [ 0.09277938 -0.02184989 0.27815935]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8f3JxNqQBCMAWyUSwOMAXSUR0CkIndrwe/6dX2UKGgGR7/UUbDMvAXVaAdLA2gIR0CkIgCTt9hJdX2UKGgGR7+5jDsMRYigaAdLAmgIR0CkIcPluFYddX2UKGgGR7/RMfzSThYOaAdLA2gIR0CkIkBCD28JdX2UKGgGR7/ROskpqh11aAdLA2gIR0CkIoNLcsUZdX2UKGgGR7+40j1PFefJaAdLAmgIR0CkIktz0Yj0dX2UKGgGR7/FD+irT6SDaAdLA2gIR0CkIg/jS5RTdX2UKGgGR7/PT/hl18suaAdLA2gIR0CkIdNwR5C4dX2UKGgGR7/KqjrRjSXuaAdLA2gIR0CkIpJpFkQPdX2UKGgGR7/DkWhysCDFaAdLAmgIR0CkIhfpD/lydX2UKGgGR7/SoNd7fHghaAdLA2gIR0CkIld5prULdX2UKGgGR7/QfHggow23aAdLA2gIR0CkId76P8yfdX2UKGgGR7/AvZAY51eTaAdLAmgIR0CkIppOerdWdX2UKGgGR7/IVGkN4JNTaAdLA2gIR0CkIiWi+L3sdX2UKGgGR7/GvK2a2F37aAdLAmgIR0CkIej2JzkqdX2UKGgGR7/NGvwEyLydaAdLA2gIR0CkImXVCojwdX2UKGgGR7+e9Jz1bqyGaAdLAWgIR0CkIe2QwK0EdX2UKGgGR7/O8HObAk9maAdLA2gIR0CkIqjkdV/+dX2UKGgGR7+ZTAFgUlAvaAdLAWgIR0CkIqzR6WxAdX2UKGgGR7/LdNWU8mrsaAdLA2gIR0CkInIjGDL9dX2UKGgGR7/eK8tf5ULlaAdLBGgIR0CkIjaciGFjdX2UKGgGR7/ONT987ZFoaAdLA2gIR0CkIfn4XXRPdX2UKGgGR7/Ssyi22G7BaAdLA2gIR0CkIrvjn3cpdX2UKGgGR7+7WEsasIVuaAdLAmgIR0CkIn03fhuPdX2UKGgGR7/KNvwVj7Q+aAdLA2gIR0CkIkY0EX+EdX2UKGgGR7+5FYuCf6GhaAdLAmgIR0CkIsUpmVZ+dX2UKGgGR7+3cRDkU9IPaAdLAmgIR0CkIoaFmFrVdX2UKGgGR7/UKgIyCWeIaAdLBGgIR0CkIg5LqUu+dX2UKGgGR7+2zJIUahpQaAdLAmgIR0CkIk80+C9RdX2UKGgGR7/C6RQrMC9zaAdLAmgIR0CkIpEAPuohdX2UKGgGR7/JD1oQFs55aAdLA2gIR0CkItPM8ox6dX2UKGgGR7+ektVaOgg6aAdLAWgIR0CkItkHD766dX2UKGgGR7+9m7J4jbBXaAdLAmgIR0CkIpqkVN5/dX2UKGgGR7/QUILPUrkKaAdLA2gIR0CkIl8Nx2jgdX2UKGgGR7/V/9YOlO45aAdLBGgIR0CkIiJcX3xndX2UKGgGR7/RbPQfIS13aAdLA2gIR0CkIucoYvWZdX2UKGgGR7/JjCpFTefqaAdLA2gIR0CkIqiJoCdSdX2UKGgGR7/O9g4OtnwoaAdLA2gIR0CkImznied1dX2UKGgGR7/QP/aQFLWaaAdLA2gIR0CkIjA6U7jldX2UKGgGR7+x2GIsRQJpaAdLAmgIR0CkIrCb+cYqdX2UKGgGR7/JvUjLSuyNaAdLA2gIR0CkIvODjBEbdX2UKGgGR7/QzJ6po9LYaAdLA2gIR0CkInl41P30dX2UKGgGR7/TetSydFvyaAdLA2gIR0CkIjzZg5R1dX2UKGgGR7+4Iv8IiTt+aAdLAmgIR0CkIrlvAGjcdX2UKGgGR7/Un0kGA09AaAdLA2gIR0CkIwJqREF4dX2UKGgGR7/Srk8zQ/oraAdLA2gIR0CkIogt4A0bdX2UKGgGR7/QXtShrWRSaAdLA2gIR0CkIkudoWYXdX2UKGgGR7/bJDmbLEDRaAdLBGgIR0CkIsyRr8BNdX2UKGgGR7/H3PAwfyPNaAdLA2gIR0CkIpUWdmQKdX2UKGgGR7/NImw7kn1GaAdLA2gIR0CkIlhgmZ3LdX2UKGgGR7/Q5yEL6UJOaAdLBGgIR0CkIxXVsk6cdX2UKGgGR7+3029+PRzBaAdLAmgIR0CkImKXF98adX2UKGgGR7/K3EyckMTfaAdLA2gIR0CkIqNKAavSdX2UKGgGR7/PSYw7DEWJaAdLA2gIR0CkIyHLRrrPdX2UKGgGR7/ayKNyYG+saAdLBWgIR0CkIuMYMvytdX2UKGgGR7+UxqO938oAaAdLAWgIR0CkIyYq5LAYdX2UKGgGR7/CI5YHPeHjaAdLAmgIR0CkIqupsGgSdX2UKGgGR7/T76pHZsbeaAdLA2gIR0CkIm8LSeAedX2UKGgGR7+TlLeyiVSoaAdLAWgIR0CkIyyUs4DLdX2UKGgGR7/SQcPvrnklaAdLA2gIR0CkIrnjQzDXdX2UKGgGR7/NnlGPPszEaAdLA2gIR0CkIn0/W1+idX2UKGgGR7/RFspG4I8haAdLA2gIR0CkIzihWYF8dX2UKGgGR7/frPdEb5uZaAdLBWgIR0CkIvqB3A2ydX2UKGgGR7/G9Mbm2b5NaAdLA2gIR0CkIskA5q/NdX2UKGgGR7/LilSCOFQEaAdLA2gIR0CkIoxlYlpodX2UKGgGR7/Pgssg+yJLaAdLA2gIR0CkI0fVy3kQdX2UKGgGR7/Sl05lvqC6aAdLA2gIR0CkIwkhq0tzdX2UKGgGR7+d69kBjnV5aAdLAWgIR0CkIw1e8f3fdX2UKGgGR7/CRnvlU6xPaAdLAmgIR0CkItH9ehPCdX2UKGgGR7+9YHPeHi3oaAdLAmgIR0CkIpVc2R7rdX2UKGgGR7/HjBEa2nbZaAdLA2gIR0CkI1THsC1adX2UKGgGR7++TibUgB91aAdLAmgIR0CkIxYqPOpsdX2UKGgGR7+lAu7HyVfNaAdLAWgIR0CkI1tcGC7LdX2UKGgGR7/Rmmce8wpOaAdLA2gIR0CkIqRnOB1+dX2UKGgGR7/X7TUiILw4aAdLBGgIR0CkIuVjI7vHdX2UKGgGR7/Fn6l+EytWaAdLA2gIR0CkIyUornTzdX2UKGgGR7/UWlMyrPt2aAdLA2gIR0CkI2gTZg5SdX2UKGgGR7/T3Dej2zv7aAdLA2gIR0CkIrEIomXxdX2UKGgGR7/cFJxvNu+AaAdLBGgIR0CkIvhVdX1bdX2UKGgGR7/bKbayrxRVaAdLBGgIR0CkIzgQYk3TdX2UKGgGR7/OIKtxMnJDaAdLA2gIR0CkIr/rSmZWdX2UKGgGR7/ZbBXS0BwNaAdLBGgIR0CkI3s4DLbIdX2UKGgGR7/FOzIFNcnmaAdLA2gIR0CkIwSHmA9WdX2UKGgGR7/Qj+aScLBsaAdLA2gIR0CkI0Q482aVdX2UKGgGR7/Q2PDHfdhzaAdLA2gIR0CkIsvIGQjmdX2UKGgGR7/P0RODaoMsaAdLA2gIR0CkI4lMyrPudX2UKGgGR7/QmKqGUOd5aAdLA2gIR0CkIxKCg9NfdX2UKGgGR7+/xtpEhJRPaAdLAmgIR0CkI5EQf6oEdX2UKGgGR7/LhegL7XQMaAdLA2gIR0CkI1JVbRnfdX2UKGgGR7/Ee6I3zcynaAdLA2gIR0CkItpFCswMdX2UKGgGR7+6PYFqzqrzaAdLAmgIR0CkIxxO1v2odX2UKGgGR7/PN0vGp++eaAdLA2gIR0CkI2L5AQg+dX2UKGgGR7+zWGyon8baaAdLAmgIR0CkIyeLvTgEdX2UKGgGR7/S7IT4+KTCaAdLA2gIR0CkIuspG4I9dX2UKGgGR7/XCkXUH6dlaAdLBGgIR0CkI6bo0Q9SdX2UKGgGR7/AEal1r6+GaAdLAmgIR0CkIvPJq7AddX2UKGgGR7/LzYmLLpzLaAdLA2gIR0CkI3BqKxcFdX2UKGgGR7/JNO/L1VYIaAdLA2gIR0CkIzVJDmbLdX2UKGgGR7/LKHwgDA8CaAdLA2gIR0CkI7P3BYV7dX2UKGgGR7++b5M10knkaAdLAmgIR0CkIvzH0btJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (688 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.16895625707693399, "std_reward": 0.10559725638537584, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-01T13:19:40.328134"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7129d3e5e3978f83c1293eef524777395e12863863de1eb5842b182db4068f0
|
3 |
+
size 2623
|