Campqt commited on
Commit
823b8fa
1 Parent(s): 715aacc

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.17 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b1ad3244e11a4aeb24571c40a7a9a969db3047bee561c1b85176cd7016d6ad4
3
+ size 106915
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c13644171c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c13643f8f40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693571821596982777,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8rqIPohAnzqBzts+df0QvyePzT62yaY+UOgPv0qk4L4EQKw+8rqIPohAnzqBzts+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4qTEv6qusz/c38W/7yewvzvbjT5KWLo/KSSlv3LHk792yog/GRGdvxlcLr6iTqW9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyuog+iECfOoHO2z7cdfM+6U6OutuJwT51/RC/J4/NPrbJpj5eBlS//vGsP+eGWT9Q6A+/SqTgvgRArD4ti1S/nBzVv6fmYD/yuog+iECfOoHO2z7cdfM+6U6OutuJwT6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.26705128 0.001215 0.42930987]\n [-0.56636745 0.4014828 0.32575768]\n [-0.56213856 -0.43875343 0.3364259 ]\n [ 0.26705128 0.001215 0.42930987]]",
34
+ "desired_goal": "[[-1.5362818 1.4037678 -1.5458941 ]\n [-1.3762187 0.27706322 1.4558194 ]\n [-1.290166 -1.1545241 1.0686786 ]\n [-1.2270843 -0.1702732 -0.08071639]]",
35
+ "observation": "[[ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]\n [-5.6636745e-01 4.0148279e-01 3.2575768e-01 -8.2822216e-01\n 1.3511350e+00 8.4971470e-01]\n [-5.6213856e-01 -4.3875343e-01 3.3642590e-01 -8.3024865e-01\n -1.6649356e+00 8.7851948e-01]\n [ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/MvbvN9sD74Ke9M9kGmAPAUn5z3D4JA+qN4KPrmcnb2zM9U8HgO+PY3+srznao4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.02683067 -0.14006375 0.10326202]\n [ 0.01567534 0.11286739 0.2829648 ]\n [ 0.13561499 -0.07695908 0.02602563]\n [ 0.09277938 -0.02184989 0.27815935]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8f3JxNqQBCMAWyUSwOMAXSUR0CkIndrwe/6dX2UKGgGR7/UUbDMvAXVaAdLA2gIR0CkIgCTt9hJdX2UKGgGR7+5jDsMRYigaAdLAmgIR0CkIcPluFYddX2UKGgGR7/RMfzSThYOaAdLA2gIR0CkIkBCD28JdX2UKGgGR7/ROskpqh11aAdLA2gIR0CkIoNLcsUZdX2UKGgGR7+40j1PFefJaAdLAmgIR0CkIktz0Yj0dX2UKGgGR7/FD+irT6SDaAdLA2gIR0CkIg/jS5RTdX2UKGgGR7/PT/hl18suaAdLA2gIR0CkIdNwR5C4dX2UKGgGR7/KqjrRjSXuaAdLA2gIR0CkIpJpFkQPdX2UKGgGR7/DkWhysCDFaAdLAmgIR0CkIhfpD/lydX2UKGgGR7/SoNd7fHghaAdLA2gIR0CkIld5prULdX2UKGgGR7/QfHggow23aAdLA2gIR0CkId76P8yfdX2UKGgGR7/AvZAY51eTaAdLAmgIR0CkIppOerdWdX2UKGgGR7/IVGkN4JNTaAdLA2gIR0CkIiWi+L3sdX2UKGgGR7/GvK2a2F37aAdLAmgIR0CkIej2JzkqdX2UKGgGR7/NGvwEyLydaAdLA2gIR0CkImXVCojwdX2UKGgGR7+e9Jz1bqyGaAdLAWgIR0CkIe2QwK0EdX2UKGgGR7/O8HObAk9maAdLA2gIR0CkIqjkdV/+dX2UKGgGR7+ZTAFgUlAvaAdLAWgIR0CkIqzR6WxAdX2UKGgGR7/LdNWU8mrsaAdLA2gIR0CkInIjGDL9dX2UKGgGR7/eK8tf5ULlaAdLBGgIR0CkIjaciGFjdX2UKGgGR7/ONT987ZFoaAdLA2gIR0CkIfn4XXRPdX2UKGgGR7/Ssyi22G7BaAdLA2gIR0CkIrvjn3cpdX2UKGgGR7+7WEsasIVuaAdLAmgIR0CkIn03fhuPdX2UKGgGR7/KNvwVj7Q+aAdLA2gIR0CkIkY0EX+EdX2UKGgGR7+5FYuCf6GhaAdLAmgIR0CkIsUpmVZ+dX2UKGgGR7+3cRDkU9IPaAdLAmgIR0CkIoaFmFrVdX2UKGgGR7/UKgIyCWeIaAdLBGgIR0CkIg5LqUu+dX2UKGgGR7+2zJIUahpQaAdLAmgIR0CkIk80+C9RdX2UKGgGR7/C6RQrMC9zaAdLAmgIR0CkIpEAPuohdX2UKGgGR7/JD1oQFs55aAdLA2gIR0CkItPM8ox6dX2UKGgGR7+ektVaOgg6aAdLAWgIR0CkItkHD766dX2UKGgGR7+9m7J4jbBXaAdLAmgIR0CkIpqkVN5/dX2UKGgGR7/QUILPUrkKaAdLA2gIR0CkIl8Nx2jgdX2UKGgGR7/V/9YOlO45aAdLBGgIR0CkIiJcX3xndX2UKGgGR7/RbPQfIS13aAdLA2gIR0CkIucoYvWZdX2UKGgGR7/JjCpFTefqaAdLA2gIR0CkIqiJoCdSdX2UKGgGR7/O9g4OtnwoaAdLA2gIR0CkImznied1dX2UKGgGR7/QP/aQFLWaaAdLA2gIR0CkIjA6U7jldX2UKGgGR7+x2GIsRQJpaAdLAmgIR0CkIrCb+cYqdX2UKGgGR7/JvUjLSuyNaAdLA2gIR0CkIvODjBEbdX2UKGgGR7/QzJ6po9LYaAdLA2gIR0CkInl41P30dX2UKGgGR7/TetSydFvyaAdLA2gIR0CkIjzZg5R1dX2UKGgGR7+4Iv8IiTt+aAdLAmgIR0CkIrlvAGjcdX2UKGgGR7/Un0kGA09AaAdLA2gIR0CkIwJqREF4dX2UKGgGR7/Srk8zQ/oraAdLA2gIR0CkIogt4A0bdX2UKGgGR7/QXtShrWRSaAdLA2gIR0CkIkudoWYXdX2UKGgGR7/bJDmbLEDRaAdLBGgIR0CkIsyRr8BNdX2UKGgGR7/H3PAwfyPNaAdLA2gIR0CkIpUWdmQKdX2UKGgGR7/NImw7kn1GaAdLA2gIR0CkIlhgmZ3LdX2UKGgGR7/Q5yEL6UJOaAdLBGgIR0CkIxXVsk6cdX2UKGgGR7+3029+PRzBaAdLAmgIR0CkImKXF98adX2UKGgGR7/K3EyckMTfaAdLA2gIR0CkIqNKAavSdX2UKGgGR7/PSYw7DEWJaAdLA2gIR0CkIyHLRrrPdX2UKGgGR7/ayKNyYG+saAdLBWgIR0CkIuMYMvytdX2UKGgGR7+UxqO938oAaAdLAWgIR0CkIyYq5LAYdX2UKGgGR7/CI5YHPeHjaAdLAmgIR0CkIqupsGgSdX2UKGgGR7/T76pHZsbeaAdLA2gIR0CkIm8LSeAedX2UKGgGR7+TlLeyiVSoaAdLAWgIR0CkIyyUs4DLdX2UKGgGR7/SQcPvrnklaAdLA2gIR0CkIrnjQzDXdX2UKGgGR7/NnlGPPszEaAdLA2gIR0CkIn0/W1+idX2UKGgGR7/RFspG4I8haAdLA2gIR0CkIzihWYF8dX2UKGgGR7/frPdEb5uZaAdLBWgIR0CkIvqB3A2ydX2UKGgGR7/G9Mbm2b5NaAdLA2gIR0CkIskA5q/NdX2UKGgGR7/LilSCOFQEaAdLA2gIR0CkIoxlYlpodX2UKGgGR7/Pgssg+yJLaAdLA2gIR0CkI0fVy3kQdX2UKGgGR7/Sl05lvqC6aAdLA2gIR0CkIwkhq0tzdX2UKGgGR7+d69kBjnV5aAdLAWgIR0CkIw1e8f3fdX2UKGgGR7/CRnvlU6xPaAdLAmgIR0CkItH9ehPCdX2UKGgGR7+9YHPeHi3oaAdLAmgIR0CkIpVc2R7rdX2UKGgGR7/HjBEa2nbZaAdLA2gIR0CkI1THsC1adX2UKGgGR7++TibUgB91aAdLAmgIR0CkIxYqPOpsdX2UKGgGR7+lAu7HyVfNaAdLAWgIR0CkI1tcGC7LdX2UKGgGR7/Rmmce8wpOaAdLA2gIR0CkIqRnOB1+dX2UKGgGR7/X7TUiILw4aAdLBGgIR0CkIuVjI7vHdX2UKGgGR7/Fn6l+EytWaAdLA2gIR0CkIyUornTzdX2UKGgGR7/UWlMyrPt2aAdLA2gIR0CkI2gTZg5SdX2UKGgGR7/T3Dej2zv7aAdLA2gIR0CkIrEIomXxdX2UKGgGR7/cFJxvNu+AaAdLBGgIR0CkIvhVdX1bdX2UKGgGR7/bKbayrxRVaAdLBGgIR0CkIzgQYk3TdX2UKGgGR7/OIKtxMnJDaAdLA2gIR0CkIr/rSmZWdX2UKGgGR7/ZbBXS0BwNaAdLBGgIR0CkI3s4DLbIdX2UKGgGR7/FOzIFNcnmaAdLA2gIR0CkIwSHmA9WdX2UKGgGR7/Qj+aScLBsaAdLA2gIR0CkI0Q482aVdX2UKGgGR7/Q2PDHfdhzaAdLA2gIR0CkIsvIGQjmdX2UKGgGR7/P0RODaoMsaAdLA2gIR0CkI4lMyrPudX2UKGgGR7/QmKqGUOd5aAdLA2gIR0CkIxKCg9NfdX2UKGgGR7+/xtpEhJRPaAdLAmgIR0CkI5EQf6oEdX2UKGgGR7/LhegL7XQMaAdLA2gIR0CkI1JVbRnfdX2UKGgGR7/Ee6I3zcynaAdLA2gIR0CkItpFCswMdX2UKGgGR7+6PYFqzqrzaAdLAmgIR0CkIxxO1v2odX2UKGgGR7/PN0vGp++eaAdLA2gIR0CkI2L5AQg+dX2UKGgGR7+zWGyon8baaAdLAmgIR0CkIyeLvTgEdX2UKGgGR7/S7IT4+KTCaAdLA2gIR0CkIuspG4I9dX2UKGgGR7/XCkXUH6dlaAdLBGgIR0CkI6bo0Q9SdX2UKGgGR7/AEal1r6+GaAdLAmgIR0CkIvPJq7AddX2UKGgGR7/LzYmLLpzLaAdLA2gIR0CkI3BqKxcFdX2UKGgGR7/JNO/L1VYIaAdLA2gIR0CkIzVJDmbLdX2UKGgGR7/LKHwgDA8CaAdLA2gIR0CkI7P3BYV7dX2UKGgGR7++b5M10knkaAdLAmgIR0CkIvzH0btJdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17b9ea9e305eab8c96086addf048ddc88699d54bf61ef566018681f1a3a39254
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6f822cdf9a0851a441174b01e210f741d66d712e5790a35a61d3b153dcabb0c
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c13644171c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c13643f8f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693571821596982777, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8rqIPohAnzqBzts+df0QvyePzT62yaY+UOgPv0qk4L4EQKw+8rqIPohAnzqBzts+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4qTEv6qusz/c38W/7yewvzvbjT5KWLo/KSSlv3LHk792yog/GRGdvxlcLr6iTqW9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyuog+iECfOoHO2z7cdfM+6U6OutuJwT51/RC/J4/NPrbJpj5eBlS//vGsP+eGWT9Q6A+/SqTgvgRArD4ti1S/nBzVv6fmYD/yuog+iECfOoHO2z7cdfM+6U6OutuJwT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.26705128 0.001215 0.42930987]\n [-0.56636745 0.4014828 0.32575768]\n [-0.56213856 -0.43875343 0.3364259 ]\n [ 0.26705128 0.001215 0.42930987]]", "desired_goal": "[[-1.5362818 1.4037678 -1.5458941 ]\n [-1.3762187 0.27706322 1.4558194 ]\n [-1.290166 -1.1545241 1.0686786 ]\n [-1.2270843 -0.1702732 -0.08071639]]", "observation": "[[ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]\n [-5.6636745e-01 4.0148279e-01 3.2575768e-01 -8.2822216e-01\n 1.3511350e+00 8.4971470e-01]\n [-5.6213856e-01 -4.3875343e-01 3.3642590e-01 -8.3024865e-01\n -1.6649356e+00 8.7851948e-01]\n [ 2.6705128e-01 1.2149969e-03 4.2930987e-01 4.7550857e-01\n -1.0857257e-03 3.7800488e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/MvbvN9sD74Ke9M9kGmAPAUn5z3D4JA+qN4KPrmcnb2zM9U8HgO+PY3+srznao4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02683067 -0.14006375 0.10326202]\n [ 0.01567534 0.11286739 0.2829648 ]\n [ 0.13561499 -0.07695908 0.02602563]\n [ 0.09277938 -0.02184989 0.27815935]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8f3JxNqQBCMAWyUSwOMAXSUR0CkIndrwe/6dX2UKGgGR7/UUbDMvAXVaAdLA2gIR0CkIgCTt9hJdX2UKGgGR7+5jDsMRYigaAdLAmgIR0CkIcPluFYddX2UKGgGR7/RMfzSThYOaAdLA2gIR0CkIkBCD28JdX2UKGgGR7/ROskpqh11aAdLA2gIR0CkIoNLcsUZdX2UKGgGR7+40j1PFefJaAdLAmgIR0CkIktz0Yj0dX2UKGgGR7/FD+irT6SDaAdLA2gIR0CkIg/jS5RTdX2UKGgGR7/PT/hl18suaAdLA2gIR0CkIdNwR5C4dX2UKGgGR7/KqjrRjSXuaAdLA2gIR0CkIpJpFkQPdX2UKGgGR7/DkWhysCDFaAdLAmgIR0CkIhfpD/lydX2UKGgGR7/SoNd7fHghaAdLA2gIR0CkIld5prULdX2UKGgGR7/QfHggow23aAdLA2gIR0CkId76P8yfdX2UKGgGR7/AvZAY51eTaAdLAmgIR0CkIppOerdWdX2UKGgGR7/IVGkN4JNTaAdLA2gIR0CkIiWi+L3sdX2UKGgGR7/GvK2a2F37aAdLAmgIR0CkIej2JzkqdX2UKGgGR7/NGvwEyLydaAdLA2gIR0CkImXVCojwdX2UKGgGR7+e9Jz1bqyGaAdLAWgIR0CkIe2QwK0EdX2UKGgGR7/O8HObAk9maAdLA2gIR0CkIqjkdV/+dX2UKGgGR7+ZTAFgUlAvaAdLAWgIR0CkIqzR6WxAdX2UKGgGR7/LdNWU8mrsaAdLA2gIR0CkInIjGDL9dX2UKGgGR7/eK8tf5ULlaAdLBGgIR0CkIjaciGFjdX2UKGgGR7/ONT987ZFoaAdLA2gIR0CkIfn4XXRPdX2UKGgGR7/Ssyi22G7BaAdLA2gIR0CkIrvjn3cpdX2UKGgGR7+7WEsasIVuaAdLAmgIR0CkIn03fhuPdX2UKGgGR7/KNvwVj7Q+aAdLA2gIR0CkIkY0EX+EdX2UKGgGR7+5FYuCf6GhaAdLAmgIR0CkIsUpmVZ+dX2UKGgGR7+3cRDkU9IPaAdLAmgIR0CkIoaFmFrVdX2UKGgGR7/UKgIyCWeIaAdLBGgIR0CkIg5LqUu+dX2UKGgGR7+2zJIUahpQaAdLAmgIR0CkIk80+C9RdX2UKGgGR7/C6RQrMC9zaAdLAmgIR0CkIpEAPuohdX2UKGgGR7/JD1oQFs55aAdLA2gIR0CkItPM8ox6dX2UKGgGR7+ektVaOgg6aAdLAWgIR0CkItkHD766dX2UKGgGR7+9m7J4jbBXaAdLAmgIR0CkIpqkVN5/dX2UKGgGR7/QUILPUrkKaAdLA2gIR0CkIl8Nx2jgdX2UKGgGR7/V/9YOlO45aAdLBGgIR0CkIiJcX3xndX2UKGgGR7/RbPQfIS13aAdLA2gIR0CkIucoYvWZdX2UKGgGR7/JjCpFTefqaAdLA2gIR0CkIqiJoCdSdX2UKGgGR7/O9g4OtnwoaAdLA2gIR0CkImznied1dX2UKGgGR7/QP/aQFLWaaAdLA2gIR0CkIjA6U7jldX2UKGgGR7+x2GIsRQJpaAdLAmgIR0CkIrCb+cYqdX2UKGgGR7/JvUjLSuyNaAdLA2gIR0CkIvODjBEbdX2UKGgGR7/QzJ6po9LYaAdLA2gIR0CkInl41P30dX2UKGgGR7/TetSydFvyaAdLA2gIR0CkIjzZg5R1dX2UKGgGR7+4Iv8IiTt+aAdLAmgIR0CkIrlvAGjcdX2UKGgGR7/Un0kGA09AaAdLA2gIR0CkIwJqREF4dX2UKGgGR7/Srk8zQ/oraAdLA2gIR0CkIogt4A0bdX2UKGgGR7/QXtShrWRSaAdLA2gIR0CkIkudoWYXdX2UKGgGR7/bJDmbLEDRaAdLBGgIR0CkIsyRr8BNdX2UKGgGR7/H3PAwfyPNaAdLA2gIR0CkIpUWdmQKdX2UKGgGR7/NImw7kn1GaAdLA2gIR0CkIlhgmZ3LdX2UKGgGR7/Q5yEL6UJOaAdLBGgIR0CkIxXVsk6cdX2UKGgGR7+3029+PRzBaAdLAmgIR0CkImKXF98adX2UKGgGR7/K3EyckMTfaAdLA2gIR0CkIqNKAavSdX2UKGgGR7/PSYw7DEWJaAdLA2gIR0CkIyHLRrrPdX2UKGgGR7/ayKNyYG+saAdLBWgIR0CkIuMYMvytdX2UKGgGR7+UxqO938oAaAdLAWgIR0CkIyYq5LAYdX2UKGgGR7/CI5YHPeHjaAdLAmgIR0CkIqupsGgSdX2UKGgGR7/T76pHZsbeaAdLA2gIR0CkIm8LSeAedX2UKGgGR7+TlLeyiVSoaAdLAWgIR0CkIyyUs4DLdX2UKGgGR7/SQcPvrnklaAdLA2gIR0CkIrnjQzDXdX2UKGgGR7/NnlGPPszEaAdLA2gIR0CkIn0/W1+idX2UKGgGR7/RFspG4I8haAdLA2gIR0CkIzihWYF8dX2UKGgGR7/frPdEb5uZaAdLBWgIR0CkIvqB3A2ydX2UKGgGR7/G9Mbm2b5NaAdLA2gIR0CkIskA5q/NdX2UKGgGR7/LilSCOFQEaAdLA2gIR0CkIoxlYlpodX2UKGgGR7/Pgssg+yJLaAdLA2gIR0CkI0fVy3kQdX2UKGgGR7/Sl05lvqC6aAdLA2gIR0CkIwkhq0tzdX2UKGgGR7+d69kBjnV5aAdLAWgIR0CkIw1e8f3fdX2UKGgGR7/CRnvlU6xPaAdLAmgIR0CkItH9ehPCdX2UKGgGR7+9YHPeHi3oaAdLAmgIR0CkIpVc2R7rdX2UKGgGR7/HjBEa2nbZaAdLA2gIR0CkI1THsC1adX2UKGgGR7++TibUgB91aAdLAmgIR0CkIxYqPOpsdX2UKGgGR7+lAu7HyVfNaAdLAWgIR0CkI1tcGC7LdX2UKGgGR7/Rmmce8wpOaAdLA2gIR0CkIqRnOB1+dX2UKGgGR7/X7TUiILw4aAdLBGgIR0CkIuVjI7vHdX2UKGgGR7/Fn6l+EytWaAdLA2gIR0CkIyUornTzdX2UKGgGR7/UWlMyrPt2aAdLA2gIR0CkI2gTZg5SdX2UKGgGR7/T3Dej2zv7aAdLA2gIR0CkIrEIomXxdX2UKGgGR7/cFJxvNu+AaAdLBGgIR0CkIvhVdX1bdX2UKGgGR7/bKbayrxRVaAdLBGgIR0CkIzgQYk3TdX2UKGgGR7/OIKtxMnJDaAdLA2gIR0CkIr/rSmZWdX2UKGgGR7/ZbBXS0BwNaAdLBGgIR0CkI3s4DLbIdX2UKGgGR7/FOzIFNcnmaAdLA2gIR0CkIwSHmA9WdX2UKGgGR7/Qj+aScLBsaAdLA2gIR0CkI0Q482aVdX2UKGgGR7/Q2PDHfdhzaAdLA2gIR0CkIsvIGQjmdX2UKGgGR7/P0RODaoMsaAdLA2gIR0CkI4lMyrPudX2UKGgGR7/QmKqGUOd5aAdLA2gIR0CkIxKCg9NfdX2UKGgGR7+/xtpEhJRPaAdLAmgIR0CkI5EQf6oEdX2UKGgGR7/LhegL7XQMaAdLA2gIR0CkI1JVbRnfdX2UKGgGR7/Ee6I3zcynaAdLA2gIR0CkItpFCswMdX2UKGgGR7+6PYFqzqrzaAdLAmgIR0CkIxxO1v2odX2UKGgGR7/PN0vGp++eaAdLA2gIR0CkI2L5AQg+dX2UKGgGR7+zWGyon8baaAdLAmgIR0CkIyeLvTgEdX2UKGgGR7/S7IT4+KTCaAdLA2gIR0CkIuspG4I9dX2UKGgGR7/XCkXUH6dlaAdLBGgIR0CkI6bo0Q9SdX2UKGgGR7/AEal1r6+GaAdLAmgIR0CkIvPJq7AddX2UKGgGR7/LzYmLLpzLaAdLA2gIR0CkI3BqKxcFdX2UKGgGR7/JNO/L1VYIaAdLA2gIR0CkIzVJDmbLdX2UKGgGR7/LKHwgDA8CaAdLA2gIR0CkI7P3BYV7dX2UKGgGR7++b5M10knkaAdLAmgIR0CkIvzH0btJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (688 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.16895625707693399, "std_reward": 0.10559725638537584, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-01T13:19:40.328134"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7129d3e5e3978f83c1293eef524777395e12863863de1eb5842b182db4068f0
3
+ size 2623