File size: 1,709 Bytes
ed06dec
3e66b84
 
177d7f0
3e66b84
ed06dec
 
3e66b84
177d7f0
 
 
 
ed06dec
3e66b84
ed06dec
3e66b84
 
 
 
 
 
 
ed06dec
3e66b84
 
 
177d7f0
 
ed06dec
 
177d7f0
 
 
 
 
ed06dec
177d7f0
 
 
ed06dec
 
177d7f0
3e66b84
 
 
ed06dec
3e66b84
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# Initialize the FastAPI app
app = FastAPI()

# Load the model and tokenizer from Hugging Face
model_name = "Canstralian/RabbitRedux"  # Replace with your model's name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()

# Define the input and output format for prediction requests
class PredictionRequest(BaseModel):
    text: str

class PredictionResponse(BaseModel):
    text: str
    prediction: str

# Define prediction endpoint
@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest):
    try:
        # Tokenize the input text
        inputs = tokenizer(request.text, return_tensors="pt", truncation=True, padding=True)
        
        # Perform inference with the model
        with torch.no_grad():
            outputs = model(**inputs)
        
        # Get the predicted class
        prediction = torch.argmax(outputs.logits, dim=-1).item()
        
        # Map the prediction to a label (adjust as per your model's labels)
        labels = ["Label 1", "Label 2", "Label 3"]  # Replace with your actual labels
        predicted_label = labels[prediction]
        
        # Return the prediction response
        return PredictionResponse(text=request.text, prediction=predicted_label)
    except Exception as e:
        raise HTTPException(status_code=500, detail="Prediction failed")

# Define health check endpoint
@app.get("/health")
async def health_check():
    return {"status": "healthy"}