Canstralian
commited on
Commit
•
bb89ac3
1
Parent(s):
1feb780
Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
from datasets import load_dataset
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load datasets
|
6 |
+
def load_train_data():
|
7 |
+
# Example dataset
|
8 |
+
train_dataset = load_dataset('csv', data_files={"train": "datasets/Canstralian/ShellCommands.csv"})
|
9 |
+
return train_dataset
|
10 |
+
|
11 |
+
# Load model and tokenizer
|
12 |
+
def load_model_and_tokenizer(model_name):
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # Adjust labels
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
return model, tokenizer
|
16 |
+
|
17 |
+
# Preprocessing function
|
18 |
+
def preprocess_function(examples, tokenizer):
|
19 |
+
return tokenizer(examples['text'], padding=True, truncation=True)
|
20 |
+
|
21 |
+
# Fine-tuning function
|
22 |
+
def fine_tune(model_name="WhiteRabbitNeo/WhiteRabbitNeo-13B-v1"):
|
23 |
+
train_data = load_train_data()
|
24 |
+
model, tokenizer = load_model_and_tokenizer(model_name)
|
25 |
+
|
26 |
+
# Tokenize the dataset
|
27 |
+
train_data = train_data.map(lambda x: preprocess_function(x, tokenizer), batched=True)
|
28 |
+
train_data.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
|
29 |
+
|
30 |
+
# Training arguments
|
31 |
+
training_args = TrainingArguments(
|
32 |
+
output_dir='./results',
|
33 |
+
evaluation_strategy="epoch",
|
34 |
+
learning_rate=2e-5,
|
35 |
+
per_device_train_batch_size=16,
|
36 |
+
num_train_epochs=3,
|
37 |
+
weight_decay=0.01,
|
38 |
+
)
|
39 |
+
|
40 |
+
trainer = Trainer(
|
41 |
+
model=model,
|
42 |
+
args=training_args,
|
43 |
+
train_dataset=train_data['train'],
|
44 |
+
)
|
45 |
+
|
46 |
+
trainer.train()
|
47 |
+
|
48 |
+
# Call fine-tuning
|
49 |
+
fine_tune()
|