CarlosGranados
commited on
new_model: PPO model trained for 4 and 1000000 steps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +40 -28
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 268.56 +/- 23.20
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f36990860>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f36990900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f369909a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f36990a40>", "_build": "<function ActorCriticPolicy._build at 0x7f6f36990ae0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f36990b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f36990c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f36990cc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f36990d60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f36990e00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f36990ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f36990f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6f3698d000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 0.0, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1.0, "_stats_window_size": 100, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEMd/0kd5tVsL5UQVVbgAZyeMA2luY5SKEVvBQkgompRZf/RkEeSV9ZMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1jBpudW1weS5yYW5kb20uYml0X2dlbmVyYXRvcpSMG19fcHl4X3VucGlja2xlX1NlZWRTZXF1ZW5jZZSTlGhEjAxTZWVkU2VxdWVuY2WUk5RKIqLqA06HlFKUKIoRk9L/ii1mXorMcAVDqI7nmQBLAGgRKJYQAAAAAAAAAGgmFSDBONvSOXGvOWcLSt2UaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiSwSFlGgZdJRSlEsEKXSUYoaUYoWUUpR1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVqgIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEDuB74o5J6f7MJhjOdEX4DCMA2luY5SKESG4oQaPN1wnwdowVNXN+/EAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVztLyQAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaC2MDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihEHHHa6XzpKrwNTefZFQw2AAEsAjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAFZoURXIDHja13PNFjO1ejpRoC4wCdTSUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpRLBCl0lGKGlGKFlFKUdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Mar 29 23:14:13 UTC 2024", "Python": "3.11.7", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "2.0.0", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83fa74c9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83fa74ca40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83fa74cae0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83fa74cb80>", "_build": "<function ActorCriticPolicy._build at 0x7f83fa74cc20>", "forward": "<function ActorCriticPolicy.forward at 0x7f83fa74ccc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83fa74cd60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83fa74ce00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83fa74cea0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83fa74cf40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83fa74cfe0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83fa74d080>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f83fa746340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720094483813721839, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAC63SK+VY8EP++UxT2hJqK+/CxcvcHtED4AAAAAAAAAANoVRD600Ie8O8JtO+/nsbneKO+9A6GOugAAgD8AAIA/MwioPU8/ND/Ij7s8cpWwvp4jCz3WHdg7AAAAAAAAAABNt9k911RIu5O/Ub5ukmG9xEavu8LuRL0AAIA/AACAPxpnKb3V/yQ/oFLSuzDTmb66hGi88duIPQAAAAAAAAAAGmPfPRn9bD6zQAm+kGl0viNuPrxxC8M8AAAAAAAAAAAAXAO80lXCP7B+Xb3qiQY+OwgVPPURRjwAAAAAAAAAADPs1Ty4lK4/56E3PmABpL7UYWi6pq2uPQAAAAAAAAAAZuHMPeWEPj7W5F6+zE11vrcLOL07OeO9AAAAAAAAAAAzXXe8ayi8PU0q7jy9R1m+0XUQPZ8eQr0AAAAAAAAAAC3nEj4HySE/6EGaPNDEvL6TC7U9a8yZvQAAAAAAAAAAGg1avScUUz9cdMi9u2vvvqKl/7yGQaG9AAAAAAAAAABmDgA9JJJzPOVrJ70CJDu+DnEMO0B2SzwAAAAAAAAAADPCLb2Pq0c/2KUBPqFNqr5Sujc917zGPQAAAAAAAAAAPd6EPo1YaD9VvDE+JGvfvvbIkD6OG9a8AAAAAAAAAAAzbGE9e0qYunr9drOAXB+sGbN1upyqwDMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIkBzq8lHCMAWyUTUsBjAF0lEdAuNPeDdxhlXV9lChoBkdAUDJekYXO4WgHS89oCEdAuNRjxMFlkHV9lChoBkdAbulPkaMrE2gHTScBaAhHQLjUaKRMewN1fZQoaAZHQHHAjUqhDgJoB01WAWgIR0C41HV89fTkdX2UKGgGR0Bx558OTaCdaAdNEwFoCEdAuNSXlIVdonV9lChoBkdAb/a9dNWU8mgHTQEBaAhHQLjUvfhuO0d1fZQoaAZHQG7Z4+8oQWhoB0vraAhHQLjUwx7iQ1d1fZQoaAZHQEVRd8Aq/dtoB0vNaAhHQLjU2dz4k/t1fZQoaAZHQG3WUG3WnTBoB00CAWgIR0C41PQyVObidX2UKGgGR0Bxbs3PzFuOaAdNFgFoCEdAuNUCfthNNHV9lChoBkdAcwq+FlCkXWgHS9poCEdAuNUiHTI/7nV9lChoBkdAclPnssxwhmgHS/NoCEdAuNVZDx9XtHV9lChoBkdAcxEtbcGke2gHS+xoCEdAuNVh3C9AX3V9lChoBkdAbabpDeCTU2gHTQIBaAhHQLjVZaX8fmt1fZQoaAZHQHBz8FEAo5RoB00bAWgIR0C41hpL26CldX2UKGgGR0BwvCONo8ISaAdNRgFoCEdAuNY0UHpr13V9lChoBkdAb9eWIGhVVGgHTTcBaAhHQLjWNIzFdcB1fZQoaAZHQHDYN2Pkq+doB00ZAWgIR0C41p1urIYFdX2UKGgGR0BQ0kXtShrWaAdLzmgIR0C41sh1PnB+dX2UKGgGR0Bx04PpY9xIaAdNBgFoCEdAuNbIvi97GHV9lChoBkdAb4erSVnmJWgHTTMBaAhHQLjW6O9FnZl1fZQoaAZHQHKeltCRfWtoB00kAWgIR0C41ujot+TedX2UKGgGR0BzKKUgSvkjaAdNPgFoCEdAuNbvxhDw6XV9lChoBkdAcUsIXTEzf2gHTR0BaAhHQLjXHLh73PB1fZQoaAZHQHDkiQkona5oB003AWgIR0C41z0fkmx/dX2UKGgGR0BweIGW2PT5aAdL8mgIR0C411tgWrOrdX2UKGgGR0ByoLczqKP5aAdL9WgIR0C412mgvlEJdX2UKGgGR0ByStBC2MKkaAdL9mgIR0C4128XenAJdX2UKGgGR0BxwvzI3irDaAdNVAFoCEdAuNew0Ltu1nV9lChoBkdAc30vZAY51mgHTXgBaAhHQLjX5gHeJpF1fZQoaAZHQE8W6e5Fw1loB0voaAhHQLjX++kxh2J1fZQoaAZHQHA0H7DVH4JoB00AAWgIR0C42D6zAvcrdX2UKGgGR0BvuX9zfaYeaAdNEwFoCEdAuNhnFDOTq3V9lChoBkdAcsW21lXii2gHS/hoCEdAuNjP+AEt/XV9lChoBkdAcUMp2ll9SmgHTQsBaAhHQLjY0lxwQ191fZQoaAZHQHDNiyyD7IloB0v9aAhHQLjY+aCL/CJ1fZQoaAZHQHJjiGJvYOFoB00eAWgIR0C42SQzP8htdX2UKGgGR0Bs+xFI/Z/TaAdL/WgIR0C42S4A4n4PdX2UKGgGR0BwYLltCRfXaAdL52gIR0C42TvgR9PUdX2UKGgGR0ByfRLmITGpaAdL52gIR0C42Ux7eEZjdX2UKGgGR0BvDWhqTKT0aAdNFwFoCEdAuNmDdtVJc3V9lChoBkdAb6Wj7hvR7mgHTTwBaAhHQLjZhAMlTm51fZQoaAZHQHJHj4HoouxoB00SAWgIR0C4510f9xZMdX2UKGgGR0BzxS0zCUHIaAdNWQFoCEdAuOdxSrHU+nV9lChoBkdAcXNgmqo60mgHTQwBaAhHQLjnkAIY3vR1fZQoaAZHQHA9IYrJ8v5oB0v3aAhHQLjnmpW3jMp1fZQoaAZHQHIOyS/0ulJoB00NAWgIR0C459A3974SdX2UKGgGR0ByjCWmgrYoaAdL7WgIR0C46D5+6RQrdX2UKGgGR0BySe1a4c3maAdNJgFoCEdAuOhv4zrNW3V9lChoBkdAcHmW8RL9M2gHTRABaAhHQLjol+sYEW91fZQoaAZHQG6oN5D7ZWdoB01NAWgIR0C46JwUQCjldX2UKGgGR0ByboOH31zyaAdNBAFoCEdAuOjQkRjBmHV9lChoBkdAcePpm29cr2gHTRoBaAhHQLjo13MINVl1fZQoaAZHQHJcSxu89OhoB00BAWgIR0C46OAdfb9IdX2UKGgGR0BzCG22G7BgaAdNJgFoCEdAuOkeg2606nV9lChoBkdAcTnSt/4Ir2gHTRMBaAhHQLjpSoDgZTB1fZQoaAZHQHAK/H5rP+poB00aAWgIR0C46Vg1JlJ6dX2UKGgGR0Bxn36P8yeqaAdNRAFoCEdAuOl166asqHV9lChoBkdAcuBYtQKrrGgHTQABaAhHQLjpi0ZFXq91fZQoaAZHQG9sXmFJxvNoB00lAWgIR0C46ZSUornUdX2UKGgGR0BwuVkmQbMpaAdNAQFoCEdAuOmaYgJTl3V9lChoBkdAb+ZnlGPPs2gHTR4BaAhHQLjpnfA9FF51fZQoaAZHQEiy+/QBxPxoB0vHaAhHQLjqFuc+aBt1fZQoaAZHQHBu5NbkfcNoB0vraAhHQLjqFvgm7at1fZQoaAZHQHE/7sfJV81oB0vvaAhHQLjqQUVBUrF1fZQoaAZHQFGcuFpPAO9oB0vKaAhHQLjqUIFeOXF1fZQoaAZHQHCF8slLOA1oB0v0aAhHQLjqriiqQzV1fZQoaAZHQHAgun/DLr5oB00QAWgIR0C46rHwG4ZudX2UKGgGR0BxZZ1Oj7AMaAdL+GgIR0C46r2mDUVjdX2UKGgGR0By1rEHdGiIaAdL7mgIR0C46zDbah6CdX2UKGgGR0BvG4HX2/SIaAdNCgFoCEdAuOtsmgJ1JXV9lChoBkdAcQWlxffGdmgHS/doCEdAuOuNYMfA9HV9lChoBkdAcEOBVdX1amgHTQoBaAhHQLjroVTJhfB1fZQoaAZHQHD7LLU1AJNoB005AWgIR0C466gWJrLydX2UKGgGR0BzhWHqNZNgaAdNGAFoCEdAuOvainHeanV9lChoBkdAcrEONHYpUmgHTSYBaAhHQLjr+yeZof11fZQoaAZHQHIzwUg0TDhoB0v6aAhHQLjsOVKPGQ11fZQoaAZHQG/YAV45cTtoB01EAWgIR0C47D0v0yxidX2UKGgGR0BRQetr9EThaAdLwWgIR0C47Fuv+wTudX2UKGgGR0BxPltl7MPjaAdL/mgIR0C47G8Ft8/mdX2UKGgGR0ByuFJqZc9oaAdNMAFoCEdAuOykJ7b+LnV9lChoBkdAb2RbVz6rNmgHTRkBaAhHQLjsrf+0gKZ1fZQoaAZHQG8xh11W8yxoB00LAWgIR0C47PUU0vXcdX2UKGgGR0BxVAWac7QtaAdNJQFoCEdAuO1GAYpDu3V9lChoBkdAcG1QZGax5mgHTQQBaAhHQLjtcMURFql1fZQoaAZHQHCsixRl6JJoB0v8aAhHQLjtlY1pCa91fZQoaAZHQHMwjyWiUPhoB0v+aAhHQLjty0nPVut1fZQoaAZHQHLdqslsxfxoB00mAWgIR0C47iztkWhzdX2UKGgGR0ByiJamoBJaaAdNDAFoCEdAuO4tMg2ZRnV9lChoBkdAbXbjLjghr2gHTUIBaAhHQLjuYOqebut1fZQoaAZHQHF8F9F4LThoB00eAWgIR0C47o0sjFAFdX2UKGgGR0BxHA8FINExaAdL8GgIR0C47uxc/t6YdX2UKGgGR0BvSL4i5d4WaAdNKAFoCEdAuO74fV7QcHV9lChoBkdAcoQvS+g132gHTSEBaAhHQLjvCMUAT7F1fZQoaAZHQHFLmBWgezVoB00XAWgIR0C47wi88La3dX2UKGgGR0BvKAcaOxSpaAdNPwFoCEdAuO8l5qubJHV9lChoBkdAcjOiFj/dZmgHS/poCEdAuO9RMh5gPXV9lChoBkdAcWpguRLbpWgHTR0BaAhHQLjvVVOsT391fZQoaAZHQHEdMH0K7ZpoB00JAWgIR0C478fJ/5LzdX2UKGgGR0BxqZf3N9piaAdL+2gIR0C4783Onl4kdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGQQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEOEFEoI8iEMK/sa3VvubIlyMA2luY5SKEb/pYoPEhNm4FpbqlNCxbrkAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1jBpudW1weS5yYW5kb20uYml0X2dlbmVyYXRvcpSMG19fcHl4X3VucGlja2xlX1NlZWRTZXF1ZW5jZZSTlGhEjAxTZWVkU2VxdWVuY2WUk5RKIqLqA06HlFKUKIoQmV2ZGfWiE1O6ThPOaJR8eUsAaBEolhAAAAAAAAAA4/fs6KoLGMb7ocQCd1eK1ZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJLBIWUaBl0lFKUSwQpdJRihpRihZRSlHViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpwIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEFosapLDDGIVBOELxgzbZHqMA2luY5SKEBH8KgdWyyL8xSCh4GRjGhF1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKeTWHUXWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaC2MDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihGQrdX+G7VSdUi178RPVCTYAEsAjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAT/LKPMo+HTP46gWAE5e7rpRoC4wCdTSUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpRLBCl0lGKGlGKFlFKUdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Mar 29 23:14:13 UTC 2024", "Python": "3.11.7", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "2.0.0", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a5fce0623a469e897f2b7914ae68baa869084bceaa4458233e36c77b145a90
|
3 |
+
size 149500
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,45 +4,57 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
-
"_last_obs":
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
"_last_original_obs": null,
|
35 |
"_episode_num": 0,
|
36 |
"use_sde": false,
|
37 |
"sde_sample_freq": -1,
|
38 |
-
"_current_progress_remaining":
|
39 |
"_stats_window_size": 100,
|
40 |
-
"ep_info_buffer":
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"observation_space": {
|
44 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
45 |
-
":serialized:": "
|
46 |
"dtype": "float32",
|
47 |
"bounded_below": "[ True True True True True True True True]",
|
48 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -57,7 +69,7 @@
|
|
57 |
},
|
58 |
"action_space": {
|
59 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
60 |
-
":serialized:": "
|
61 |
"n": "4",
|
62 |
"start": "0",
|
63 |
"_shape": [],
|
@@ -71,8 +83,8 @@
|
|
71 |
"ent_coef": 0.01,
|
72 |
"vf_coef": 0.5,
|
73 |
"max_grad_norm": 0.5,
|
74 |
-
"batch_size":
|
75 |
-
"n_epochs":
|
76 |
"clip_range": {
|
77 |
":type:": "<class 'function'>",
|
78 |
":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
@@ -82,6 +94,6 @@
|
|
82 |
"target_kl": null,
|
83 |
"lr_schedule": {
|
84 |
":type:": "<class 'function'>",
|
85 |
-
":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+
|
86 |
}
|
87 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f83fa74c9a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83fa74ca40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83fa74cae0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83fa74cb80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f83fa74cc20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f83fa74ccc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83fa74cd60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83fa74ce00>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f83fa74cea0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83fa74cf40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83fa74cfe0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83fa74d080>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f83fa746340>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1720094483813721839,
|
30 |
+
"learning_rate": 0.0001,
|
31 |
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAC63SK+VY8EP++UxT2hJqK+/CxcvcHtED4AAAAAAAAAANoVRD600Ie8O8JtO+/nsbneKO+9A6GOugAAgD8AAIA/MwioPU8/ND/Ij7s8cpWwvp4jCz3WHdg7AAAAAAAAAABNt9k911RIu5O/Ub5ukmG9xEavu8LuRL0AAIA/AACAPxpnKb3V/yQ/oFLSuzDTmb66hGi88duIPQAAAAAAAAAAGmPfPRn9bD6zQAm+kGl0viNuPrxxC8M8AAAAAAAAAAAAXAO80lXCP7B+Xb3qiQY+OwgVPPURRjwAAAAAAAAAADPs1Ty4lK4/56E3PmABpL7UYWi6pq2uPQAAAAAAAAAAZuHMPeWEPj7W5F6+zE11vrcLOL07OeO9AAAAAAAAAAAzXXe8ayi8PU0q7jy9R1m+0XUQPZ8eQr0AAAAAAAAAAC3nEj4HySE/6EGaPNDEvL6TC7U9a8yZvQAAAAAAAAAAGg1avScUUz9cdMi9u2vvvqKl/7yGQaG9AAAAAAAAAABmDgA9JJJzPOVrJ70CJDu+DnEMO0B2SzwAAAAAAAAAADPCLb2Pq0c/2KUBPqFNqr5Sujc917zGPQAAAAAAAAAAPd6EPo1YaD9VvDE+JGvfvvbIkD6OG9a8AAAAAAAAAAAzbGE9e0qYunr9drOAXB+sGbN1upyqwDMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIkBzq8lHCMAWyUTUsBjAF0lEdAuNPeDdxhlXV9lChoBkdAUDJekYXO4WgHS89oCEdAuNRjxMFlkHV9lChoBkdAbulPkaMrE2gHTScBaAhHQLjUaKRMewN1fZQoaAZHQHHAjUqhDgJoB01WAWgIR0C41HV89fTkdX2UKGgGR0Bx558OTaCdaAdNEwFoCEdAuNSXlIVdonV9lChoBkdAb/a9dNWU8mgHTQEBaAhHQLjUvfhuO0d1fZQoaAZHQG7Z4+8oQWhoB0vraAhHQLjUwx7iQ1d1fZQoaAZHQEVRd8Aq/dtoB0vNaAhHQLjU2dz4k/t1fZQoaAZHQG3WUG3WnTBoB00CAWgIR0C41PQyVObidX2UKGgGR0Bxbs3PzFuOaAdNFgFoCEdAuNUCfthNNHV9lChoBkdAcwq+FlCkXWgHS9poCEdAuNUiHTI/7nV9lChoBkdAclPnssxwhmgHS/NoCEdAuNVZDx9XtHV9lChoBkdAcxEtbcGke2gHS+xoCEdAuNVh3C9AX3V9lChoBkdAbabpDeCTU2gHTQIBaAhHQLjVZaX8fmt1fZQoaAZHQHBz8FEAo5RoB00bAWgIR0C41hpL26CldX2UKGgGR0BwvCONo8ISaAdNRgFoCEdAuNY0UHpr13V9lChoBkdAb9eWIGhVVGgHTTcBaAhHQLjWNIzFdcB1fZQoaAZHQHDYN2Pkq+doB00ZAWgIR0C41p1urIYFdX2UKGgGR0BQ0kXtShrWaAdLzmgIR0C41sh1PnB+dX2UKGgGR0Bx04PpY9xIaAdNBgFoCEdAuNbIvi97GHV9lChoBkdAb4erSVnmJWgHTTMBaAhHQLjW6O9FnZl1fZQoaAZHQHKeltCRfWtoB00kAWgIR0C41ujot+TedX2UKGgGR0BzKKUgSvkjaAdNPgFoCEdAuNbvxhDw6XV9lChoBkdAcUsIXTEzf2gHTR0BaAhHQLjXHLh73PB1fZQoaAZHQHDkiQkona5oB003AWgIR0C41z0fkmx/dX2UKGgGR0BweIGW2PT5aAdL8mgIR0C411tgWrOrdX2UKGgGR0ByoLczqKP5aAdL9WgIR0C412mgvlEJdX2UKGgGR0ByStBC2MKkaAdL9mgIR0C4128XenAJdX2UKGgGR0BxwvzI3irDaAdNVAFoCEdAuNew0Ltu1nV9lChoBkdAc30vZAY51mgHTXgBaAhHQLjX5gHeJpF1fZQoaAZHQE8W6e5Fw1loB0voaAhHQLjX++kxh2J1fZQoaAZHQHA0H7DVH4JoB00AAWgIR0C42D6zAvcrdX2UKGgGR0BvuX9zfaYeaAdNEwFoCEdAuNhnFDOTq3V9lChoBkdAcsW21lXii2gHS/hoCEdAuNjP+AEt/XV9lChoBkdAcUMp2ll9SmgHTQsBaAhHQLjY0lxwQ191fZQoaAZHQHDNiyyD7IloB0v9aAhHQLjY+aCL/CJ1fZQoaAZHQHJjiGJvYOFoB00eAWgIR0C42SQzP8htdX2UKGgGR0Bs+xFI/Z/TaAdL/WgIR0C42S4A4n4PdX2UKGgGR0BwYLltCRfXaAdL52gIR0C42TvgR9PUdX2UKGgGR0ByfRLmITGpaAdL52gIR0C42Ux7eEZjdX2UKGgGR0BvDWhqTKT0aAdNFwFoCEdAuNmDdtVJc3V9lChoBkdAb6Wj7hvR7mgHTTwBaAhHQLjZhAMlTm51fZQoaAZHQHJHj4HoouxoB00SAWgIR0C4510f9xZMdX2UKGgGR0BzxS0zCUHIaAdNWQFoCEdAuOdxSrHU+nV9lChoBkdAcXNgmqo60mgHTQwBaAhHQLjnkAIY3vR1fZQoaAZHQHA9IYrJ8v5oB0v3aAhHQLjnmpW3jMp1fZQoaAZHQHIOyS/0ulJoB00NAWgIR0C459A3974SdX2UKGgGR0ByjCWmgrYoaAdL7WgIR0C46D5+6RQrdX2UKGgGR0BySe1a4c3maAdNJgFoCEdAuOhv4zrNW3V9lChoBkdAcHmW8RL9M2gHTRABaAhHQLjol+sYEW91fZQoaAZHQG6oN5D7ZWdoB01NAWgIR0C46JwUQCjldX2UKGgGR0ByboOH31zyaAdNBAFoCEdAuOjQkRjBmHV9lChoBkdAcePpm29cr2gHTRoBaAhHQLjo13MINVl1fZQoaAZHQHJcSxu89OhoB00BAWgIR0C46OAdfb9IdX2UKGgGR0BzCG22G7BgaAdNJgFoCEdAuOkeg2606nV9lChoBkdAcTnSt/4Ir2gHTRMBaAhHQLjpSoDgZTB1fZQoaAZHQHAK/H5rP+poB00aAWgIR0C46Vg1JlJ6dX2UKGgGR0Bxn36P8yeqaAdNRAFoCEdAuOl166asqHV9lChoBkdAcuBYtQKrrGgHTQABaAhHQLjpi0ZFXq91fZQoaAZHQG9sXmFJxvNoB00lAWgIR0C46ZSUornUdX2UKGgGR0BwuVkmQbMpaAdNAQFoCEdAuOmaYgJTl3V9lChoBkdAb+ZnlGPPs2gHTR4BaAhHQLjpnfA9FF51fZQoaAZHQEiy+/QBxPxoB0vHaAhHQLjqFuc+aBt1fZQoaAZHQHBu5NbkfcNoB0vraAhHQLjqFvgm7at1fZQoaAZHQHE/7sfJV81oB0vvaAhHQLjqQUVBUrF1fZQoaAZHQFGcuFpPAO9oB0vKaAhHQLjqUIFeOXF1fZQoaAZHQHCF8slLOA1oB0v0aAhHQLjqriiqQzV1fZQoaAZHQHAgun/DLr5oB00QAWgIR0C46rHwG4ZudX2UKGgGR0BxZZ1Oj7AMaAdL+GgIR0C46r2mDUVjdX2UKGgGR0By1rEHdGiIaAdL7mgIR0C46zDbah6CdX2UKGgGR0BvG4HX2/SIaAdNCgFoCEdAuOtsmgJ1JXV9lChoBkdAcQWlxffGdmgHS/doCEdAuOuNYMfA9HV9lChoBkdAcEOBVdX1amgHTQoBaAhHQLjroVTJhfB1fZQoaAZHQHD7LLU1AJNoB005AWgIR0C466gWJrLydX2UKGgGR0BzhWHqNZNgaAdNGAFoCEdAuOvainHeanV9lChoBkdAcrEONHYpUmgHTSYBaAhHQLjr+yeZof11fZQoaAZHQHIzwUg0TDhoB0v6aAhHQLjsOVKPGQ11fZQoaAZHQG/YAV45cTtoB01EAWgIR0C47D0v0yxidX2UKGgGR0BRQetr9EThaAdLwWgIR0C47Fuv+wTudX2UKGgGR0BxPltl7MPjaAdL/mgIR0C47G8Ft8/mdX2UKGgGR0ByuFJqZc9oaAdNMAFoCEdAuOykJ7b+LnV9lChoBkdAb2RbVz6rNmgHTRkBaAhHQLjsrf+0gKZ1fZQoaAZHQG8xh11W8yxoB00LAWgIR0C47PUU0vXcdX2UKGgGR0BxVAWac7QtaAdNJQFoCEdAuO1GAYpDu3V9lChoBkdAcG1QZGax5mgHTQQBaAhHQLjtcMURFql1fZQoaAZHQHCsixRl6JJoB0v8aAhHQLjtlY1pCa91fZQoaAZHQHMwjyWiUPhoB0v+aAhHQLjty0nPVut1fZQoaAZHQHLdqslsxfxoB00mAWgIR0C47iztkWhzdX2UKGgGR0ByiJamoBJaaAdNDAFoCEdAuO4tMg2ZRnV9lChoBkdAbXbjLjghr2gHTUIBaAhHQLjuYOqebut1fZQoaAZHQHF8F9F4LThoB00eAWgIR0C47o0sjFAFdX2UKGgGR0BxHA8FINExaAdL8GgIR0C47uxc/t6YdX2UKGgGR0BvSL4i5d4WaAdNKAFoCEdAuO74fV7QcHV9lChoBkdAcoQvS+g132gHTSEBaAhHQLjvCMUAT7F1fZQoaAZHQHFLmBWgezVoB00XAWgIR0C47wi88La3dX2UKGgGR0BvKAcaOxSpaAdNPwFoCEdAuO8l5qubJHV9lChoBkdAcjOiFj/dZmgHS/poCEdAuO9RMh5gPXV9lChoBkdAcWpguRLbpWgHTR0BaAhHQLjvVVOsT391fZQoaAZHQHEdMH0K7ZpoB00JAWgIR0C478fJ/5LzdX2UKGgGR0BxqZf3N9piaAdL+2gIR0C4783Onl4kdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 496,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVGQQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEOEFEoI8iEMK/sa3VvubIlyMA2luY5SKEb/pYoPEhNm4FpbqlNCxbrkAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1jBpudW1weS5yYW5kb20uYml0X2dlbmVyYXRvcpSMG19fcHl4X3VucGlja2xlX1NlZWRTZXF1ZW5jZZSTlGhEjAxTZWVkU2VxdWVuY2WUk5RKIqLqA06HlFKUKIoQmV2ZGfWiE1O6ThPOaJR8eUsAaBEolhAAAAAAAAAA4/fs6KoLGMb7ocQCd1eK1ZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJLBIWUaBl0lFKUSwQpdJRihpRihZRSlHViLg==",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVpwIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEFosapLDDGIVBOELxgzbZHqMA2luY5SKEBH8KgdWyyL8xSCh4GRjGhF1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKeTWHUXWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaC2MDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihGQrdX+G7VSdUi178RPVCTYAEsAjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAT/LKPMo+HTP46gWAE5e7rpRoC4wCdTSUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpRLBCl0lGKGlGKFlFKUdWIu",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
|
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:081c6ad9bef879d1e4665954d71744cb55bf8c2b715e88f08e116ddc7e6cf837
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a31a860c6c90db325e85b0f23117b70c07cac2ca89528cf664f9883df9f58e92
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 268.56252611803455, "std_reward": 23.201935649157402, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-04T14:36:58.546806"}
|