shubhamshinde commited on
Commit
eb07498
1 Parent(s): 981e528

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
+
7
+ # Model Card for Model ID
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ This model is a GPT-J 6B fine-tuned on the TL;DR dataset using RLHF (reinforcement learning from human feedback), the same
12
+ technique that powers ChatGPT.
13
+
14
+ The TL;DR dataset is a summarization dataset, hence this model is fine-tuned for the summarization task as well.
15
+
16
+ This is likely the first open-source LLM fine-tuned on RLHF available publicly, thanks to Carper AI.
17
+
18
+ It aims to recreate the results of the [original paper by OpenAI](https://arxiv.org/abs/2009.01325).
19
+
20
+ # Model Details
21
+
22
+ - Base Model : GPT-J 6B
23
+ - Fine-Tuning Method : PPO, RLHF
24
+ - Fine-Tuning Dataset: TL;DR
25
+ - Fine-Tuning Task: Summarization
26
+
27
+ ## Model Description
28
+
29
+ <!-- Provide a longer summary of what this model is. -->
30
+
31
+ - **Developed by:** Duy V. Phung, Ayush Thakur, Louis Castricato, Jonathan Tow, Alex Havrilla
32
+ - **Finetuned from model [optional]:** GPT-J 6B
33
+
34
+ ## Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** https://github.com/CarperAI/trlx/tree/main/examples/summarize_rlhf
39
+
40
+
41
+
42
+ ## Results
43
+
44
+ SFT vs PPO
45
+
46
+ __ROUGE scores__
47
+
48
+ | Model | Rouge-1 | Rouge-2 | Rouge-L | Average |
49
+ | --- | --- | --- | --- | --- |
50
+ | SFT | 0.334 | 0.125 | 0.261 | 0.240 |
51
+ | PPO | 0.323 | 0.109 | 0.238 | 0.223 |
52
+
53
+ __Reward scores__
54
+
55
+ | Model | Average Reward | Reward $\Delta$ |
56
+ | --- | --- | --- |
57
+ | SFT | 2.729 | -0.181 |
58
+ | PPO | 3.291 | +0.411 |