--- license: apache-2.0 --- # LaMa Inpainting Model This ONNX model is a port of the original PyTorch big-lama model. ## Description There are two versions of the model: ### 1. `lama_fp32.onnx` (RECOMMENDED) This version was exported using the old torch to ONNX converter (`torch.onnx.export`). **Notes:** 1. **Custom FourierUnitJIT**: A custom [FourierUnitJIT](https://github.com/Carve-Photos/lama/blob/main/saicinpainting/training/modules/ffc.py) implementation is used since the original cannot be directly ported to ONNX without overhead. The result is identical to the original model. 2. **Fixed Input Shape**: The input shape is fixed at 512x512 pixels. Although dynamic input shapes are possible, they would require resolving issues with dynamic padding in the `irfft` and `rfftn` functions in `ffc.py`. 3. **Opset Version 17**: This model uses opset version 17. > if you need other resolution - export it using our [jupyter notebook](https://colab.research.google.com/github/Carve-Photos/lama/blob/main/export_LaMa_to_onnx.ipynb) ### 2. `lama.onnx` (NOT RECOMMENDED) This version was exported using the new torch to ONNX converter (`torch.onnx.dynamo_export`). **Notes:** 1. **Custom DFT irfftn Logic**: Uses a custom irfftn ONNX logic (patched `onnxscript`). 2. **Fixed Input Shape**: The input shape is fixed at 512x512 pixels. 3. **Opset Version 18**: This model uses opset version 18. 4. **Performance**: The model works slowly due to issues with `torch.onnx.dynamo_export` and optimization of the ONNX model. ## Resources - Original repository: [advimman/lama](https://github.com/advimman/lama) - Repository with custom implementation of exportable LaMa: [Carve-Photos/lama](https://github.com/Carve-Photos/lama) ## Example **Original image:** ![original image](./image.jpg) **lama_fp32.onnx - output:** ![onnx output](./output_onnx_fp32.png) **lama.onnx - output:** ![onnx output](./output_onnx.png) **Original model output:** ![original model output](./output_orig.png)