--- library_name: transformers tags: - mergekit - merge --- ToDo: Fill the card with more info. # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details It's a bit of a test merge to dip my toes into merging Gemma 2. Sadly, however, it seems like 8B is my PC's tolerable limit before performance becomes painstakingly and infuriatingly slow, so after this, I might have to sit out on Gemma 2 ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Casual-Autopsy/Gemma-Rad-RP](https://huggingface.co/Casual-Autopsy/Gemma-Rad-RP) as a base. ### Models Merged The following models were included in the merge: * [Casual-Autopsy/Gemma-Rad-Uncen](https://huggingface.co/Casual-Autopsy/Gemma-Rad-Uncen) * [Casual-Autopsy/Gemma-Rad-IQ](https://huggingface.co/Casual-Autopsy/Gemma-Rad-IQ) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: crestf411/gemma2-9B-sunfall-v0.5.2 - model: crestf411/gemma2-9B-daybreak-v0.5 parameters: density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7] weight: [0.5, 0.13, 0.5, 0.13, 0.3] - model: crestf411/gemstone-9b parameters: density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7] weight: [0.13, 0.5, 0.13, 0.5, 0.13] merge_method: dare_ties base_model: crestf411/gemma2-9B-sunfall-v0.5.2 parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ```yaml models: - model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 - model: nldemo/Gemma-9B-Summarizer-QLoRA parameters: density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7] weight: [0.0625, 0.25, 0.0625, 0.25, 0.0625] - model: SillyTilly/google-gemma-2-9b-it+rbojja/gemma2-9b-intent-lora-adapter parameters: density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7] weight: [0.0625, 0.25, 0.0625, 0.25, 0.0625] - model: nbeerbower/gemma2-gutenberg-9B parameters: density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7] weight: [0.25, 0.0625, 0.25, 0.0625, 0.25] merge_method: ties base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ```yaml models: - model: IlyaGusev/gemma-2-9b-it-abliterated - model: TheDrummer/Smegmma-9B-v1 parameters: density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7] weight: [0.5, 0.13, 0.5, 0.13, 0.3] - model: TheDrummer/Tiger-Gemma-9B-v1 parameters: density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7] weight: [0.13, 0.5, 0.13, 0.5, 0.13] merge_method: dare_ties base_model: IlyaGusev/gemma-2-9b-it-abliterated parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ```yaml models: - model: Casual-Autopsy/Gemma-Rad-RP - model: Casual-Autopsy/Gemma-Rad-Uncen - model: Casual-Autopsy/Gemma-Rad-IQ merge_method: model_stock base_model: Casual-Autopsy/Gemma-Rad-RP dtype: bfloat16 ```