File size: 15,332 Bytes
50e6685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import json
import re
from pathlib import Path
import argparse
import numpy as np
import tqdm
from datasets import load_from_disk, load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
import re
from thefuzz import process
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed

from typing import Tuple, List, Union, Iterable

import numpy as np
import torch
import torch.nn.functional as F
from transformers import PreTrainedTokenizer
from transformers import logging
from transformers.generation import LogitsProcessor
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
HistoryType = List[Tuple[str, str]]
TokensType = List[int]
BatchTokensType = List[List[int]]

def make_context(
    tokenizer: PreTrainedTokenizer,
    query: str,
    history: List[Tuple[str, str]] = None,
    system: str = "",
    max_window_size: int = 6144,
    chat_format: str = "chatml",
):
    if history is None:
        history = []

    im_start, im_end = "<|im_start|>", "<|im_end|>"
    im_start_tokens = [tokenizer.im_start_id]
    im_end_tokens = [tokenizer.im_end_id]
    nl_tokens = tokenizer.encode("\n")

    def _tokenize_str(role, content):
        return f"{role}\n{content}", tokenizer.encode(
            role
        ) + nl_tokens + tokenizer.encode(content)

    system_text, system_tokens_part = _tokenize_str("system", system)
    system_tokens = im_start_tokens + system_tokens_part + im_end_tokens

    raw_text = ""
    context_tokens = []

    for turn_query, turn_response in reversed(history):
        query_text, query_tokens_part = _tokenize_str("user", turn_query)
        query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
        response_text, response_tokens_part = _tokenize_str(
            "assistant", turn_response
        )
        response_tokens = im_start_tokens + response_tokens_part + im_end_tokens

        next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
        prev_chat = (
            f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
        )

        current_context_size = (
            len(system_tokens) + len(next_context_tokens) + len(context_tokens)
        )
        if current_context_size < max_window_size:
            context_tokens = next_context_tokens + context_tokens
            raw_text = prev_chat + raw_text
        else:
            break

    context_tokens = system_tokens + context_tokens
    raw_text = f"{im_start}{system_text}{im_end}" + raw_text
    context_tokens += (
        nl_tokens
        + im_start_tokens
        + _tokenize_str("user", query)[1]
        + im_end_tokens
        + nl_tokens
        + im_start_tokens
        + tokenizer.encode("assistant")
        + nl_tokens
    )
    raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"

    return raw_text, context_tokens

def chat(
    model,
    tokenizer: PreTrainedTokenizer,
    query: str,
    history: Optional[HistoryType],
    system: str = "You are a helpful assistant.",
    append_history: bool = True
) -> Tuple[str, HistoryType]:


    if history is None:
        history = []

    raw_text, context_tokens = make_context(
        tokenizer,
        query,
        history=history,
        system=system,
        max_window_size=6144,
        chat_format = "chatml",
    )

    stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
    input_ids = torch.tensor([context_tokens]).cuda()
    outputs = model.generate(
                input_ids,
                # stop_words_ids = stop_words_ids,
                return_dict_in_generate = False,
            )

    response = decode_tokens(
        outputs[0],
        tokenizer,
        raw_text_len=len(raw_text),
        context_length=len(context_tokens),
        chat_format='chatml',
        verbose=False,
    )

    if append_history:
        history.append((query, response))

    return response, history

def decode_tokens(
    tokens: Union[torch.LongTensor, TokensType],
    tokenizer: PreTrainedTokenizer,
    raw_text_len: int,
    context_length: int,
    chat_format: str = "chatml",
    verbose: bool = False,
    return_end_reason: bool = False,
) -> str:
    if torch.is_tensor(tokens):
        tokens = tokens.cpu().numpy().tolist()


    return _decode_chatml(
        tokens,
        stop_words=[],
        eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
        tokenizer=tokenizer,
        raw_text_len=raw_text_len,
        context_length=context_length,
        verbose=verbose,
        return_end_reason=return_end_reason,
    )


def _decode_chatml(
    tokens: List[int],
    *,
    stop_words: List[str],
    eod_token_ids: List[int],
    tokenizer: PreTrainedTokenizer,
    raw_text_len: int,
    context_length: int,
    verbose: bool = False,
    return_end_reason: bool = False,
    chat_format = "chatml",
):
    end_reason = f"Gen length {len(tokens)}"
    eod_token_idx = context_length
    for eod_token_idx in range(context_length, len(tokens)):
        if tokens[eod_token_idx] in eod_token_ids:
            end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
            break

    trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
    if verbose:
        print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
        print("\nRaw Generate:", trim_decode_tokens)
        print("\nEnd Reason:", end_reason)
    for stop_word in stop_words:
        trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
    trim_decode_tokens = trim_decode_tokens.strip()
    if verbose:
        print("\nGenerate:", trim_decode_tokens)

    if return_end_reason:
        return trim_decode_tokens, end_reason
    else:
        return trim_decode_tokens



def load_models_tokenizer(args):
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.generation import GenerationConfig

    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
    model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    model.generation_config.do_sample = False # use greedy decoding
    return model, tokenizer

'''
python eval/evaluate_chat_gsm8k.py [--use-fewshot]
'''

INVALID_ANS = "[invalid]"
DEVICE = "cuda:0"

def doc_to_text(doc, use_fewshot):
    if use_fewshot:
        context = (
            "Question: Angelo and Melanie want to plan how many hours over the next week they should study together for their test next week. They have 2 chapters of their textbook to study and 4 worksheets to memorize. They figure out that they should dedicate 3 hours to each chapter of their textbook and 1.5 hours for each worksheet. If they plan to study no more than 4 hours each day, how many days should they plan to study total over the next week if they take a 10-minute break every hour, include 3 10-minute snack breaks each day, and 30 minutes for lunch each day?\nLet's think step by step\n"
            "Angelo and Melanie think they should dedicate 3 hours to each of the 2 chapters, 3 hours x 2 chapters = 6 hours total.\nFor the worksheets they plan to dedicate 1.5 hours for each worksheet, 1.5 hours x 4 worksheets = 6 hours total.\nAngelo and Melanie need to start with planning 12 hours to study, at 4 hours a day, 12 / 4 = 3 days.\nHowever, they need to include time for breaks and lunch. Every hour they want to include a 10-minute break, so 12 total hours x 10 minutes = 120 extra minutes for breaks.\nThey also want to include 3 10-minute snack breaks, 3 x 10 minutes = 30 minutes.\nAnd they want to include 30 minutes for lunch each day, so 120 minutes for breaks + 30 minutes for snack breaks + 30 minutes for lunch = 180 minutes, or 180 / 60 minutes per hour = 3 extra hours.\nSo Angelo and Melanie want to plan 12 hours to study + 3 hours of breaks = 15 hours total.\nThey want to study no more than 4 hours each day, 15 hours / 4 hours each day = 3.75\nThey will need to plan to study 4 days to allow for all the time they need.\nThe answer is 4\n\n"
            "Question: Mark's basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws.  Their opponents score double the 2 pointers but half the 3 pointers and free throws.  What's the total number of points scored by both teams added together?\nLet's think step by step\n"
            "Mark's team scores 25 2 pointers, meaning they scored 25*2= 50 points in 2 pointers.\nHis team also scores 6 3 pointers, meaning they scored 8*3= 24 points in 3 pointers\nThey scored 10 free throws, and free throws count as one point so they scored 10*1=10 points in free throws.\nAll together his team scored 50+24+10= 84 points\nMark's opponents scored double his team's number of 2 pointers, meaning they scored 50*2=100 points in 2 pointers.\nHis opponents scored half his team's number of 3 pointers, meaning they scored 24/2= 12 points in 3 pointers.\nThey also scored half Mark's team's points in free throws, meaning they scored 10/2=5 points in free throws.\nAll together Mark's opponents scored 100+12+5=117 points\nThe total score for the game is both team's scores added together, so it is 84+117=201 points\nThe answer is 201\n\n"
            "Question: Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?\nLet's think step by step\n"
            "When Bella buys 2/5 times more marbles, she'll have increased the number of marbles by 2/5*60 = 24\nThe total number of marbles she'll have is 60+24 = 84\nIf Bella currently has 60 marbles, and she has two times as many marbles as frisbees, she has 60/2 = 30 frisbees.\nIf Bella buys 2/5 times more frisbees, she'll have 2/5*30 = 12 more frisbees.\nThe total number of frisbees she'll have will increase to 30+12 = 42\nBella also has 20 more frisbees than deck cards, meaning she has 30-20 = 10 deck cards\nIf she buys 2/5 times more deck cards, she'll have 2/5*10 = 4 more deck cards.\nThe total number of deck cards she'll have is 10+4 = 14\nTogether, Bella will have a total of 14+42+84 = 140 items\nThe answer is 140\n\n"
            "Question: A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the first three baskets and 2 less of each fruit in the fourth basket. How many fruits are there?\nLet's think step by step\n"
            "For the first three baskets, the number of apples and oranges in one basket is 9+15=24\nIn total, together with bananas, the number of fruits in one basket is 24+14=38 for the first three baskets.\nSince there are three baskets each having 38 fruits, there are 3*38=114 fruits in the first three baskets.\nThe number of apples in the fourth basket is 9-2=7\nThere are also 15-2=13 oranges in the fourth basket\nThe combined number of oranges and apples in the fourth basket is 13+7=20\nThe fourth basket also contains 14-2=12 bananas.\nIn total, the fourth basket has 20+12=32 fruits.\nThe four baskets together have 32+114=146 fruits.\nThe answer is 146\n\n"
            f"Question: {doc['question']}\nLet's think step by step"
        )
    else:
        context = doc["question"]
    return context


def decode(tokens_list, tokenizer, raw_text_len):
    sents = []
    for tokens in tokens_list:
        tokens = tokens.cpu().numpy().tolist()
        sent = tokenizer.tokenizer.decode(tokens[raw_text_len:])
        sent = sent.split("<|endoftext|>")[0]
        sent = sent.split("\n\n\n")[0]
        sent = sent.split("\n\n")[0]
        sent = sent.split("Question:")[0]
        sents.append(sent)
    return sents


def generate_sample(model, tokenizer, question):
    response, _ = chat(
        model,
        tokenizer,
        question,
        history=None,
    )
    print(question)
    print("-------------")
    print(response)
    print("=============")
    return response


def extract_answer_hf(completion):
    def _get_last_digit(s):
        _PAT_LAST_DIGIT = re.compile(
            r"(?<=(\s|[\$%#{]))([+-])?(?=(\S))(0|([1-9](\d*|\d{0,2}(,\d{3})*)))?(\.\d*[1-9])?(?=(\s|[.,}]|$))"
        )
        match = list(_PAT_LAST_DIGIT.finditer(s))
        if match:
            last_digit = match[-1].group().replace(",", "").replace("+", "")
            # print(f"The last digit in {s} is {last_digit}")
        else:
            last_digit = None
            print(f"No digits found in {s!r}")
        return last_digit

    job_gen = completion.strip(".").replace("\n", "\\n")
    last_digit = _get_last_digit(job_gen)
    if last_digit is not None:
        return eval(last_digit)
    return INVALID_ANS


def extract_answer(completion):
    try:
        last_number = re.findall(r"\d+", completion)[-1]
        return eval(last_number)
    except:
        return INVALID_ANS


def is_correct(completion, answer):
    gold = extract_answer(answer)
    assert gold != INVALID_ANS, "No ground truth answer found in the document."
    return extract_answer(completion) == gold


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Test HF checkpoint.")
    parser.add_argument(
        "-c",
        "--checkpoint-path",
        type=Path,
        help="Checkpoint path",
        default="Qwen/Qwen-7B-Chat",
    )
    parser.add_argument("-f", "--sample-input-file", type=str, default=None)
    parser.add_argument(
        "-o", "--sample-output-file", type=str, default="gsm8k_res.jsonl"
    )
    parser.add_argument("--use-fewshot", action="store_true")

    args = parser.parse_args()

    if args.sample_input_file is not None:
        dataset = load_from_disk(args.sample_input_file)  # or:
    else:
        dataset = load_dataset("gsm8k", "main")

    print("Loading tokenizer ...")
    tokenizer = AutoTokenizer.from_pretrained(
        args.checkpoint_path, trust_remote_code=True, bf16=True, use_flash_attn=True
    )

    print("Loading model ...")
    model = AutoModelForCausalLM.from_pretrained(
        args.checkpoint_path, device_map="auto", trust_remote_code=True
    ).eval()
    model.generation_config = GenerationConfig.from_pretrained(
        args.checkpoint_path, trust_remote_code=True
    )
    model.generation_config.do_sample = False  # use greedy decoding

    test = dataset["test"]

    f_output = open(args.sample_output_file, "w", encoding="utf-8")
    tot_length = test.num_rows
    acc_res = []
    for doc in tqdm(test):
        context = doc_to_text(doc, args.use_fewshot)
        print(context)
        completion = generate_sample(model, tokenizer, context)
        answer = doc["answer"]
        acc = is_correct(completion, answer)
        doc["completion"] = completion
        doc["acc"] = acc
        f_output.write(json.dumps(doc, ensure_ascii=False) + "\n")
        f_output.flush()
        acc_res.append(acc)

    f_output.close()
    print("4-shot Acc: " if args.use_fewshot else "Zero-shot Acc", np.mean(acc_res))