|
import os |
|
import pandas as pd |
|
import numpy as np |
|
import argparse |
|
import datasets |
|
import torch |
|
import re |
|
from thefuzz import process |
|
from typing import List |
|
from tqdm import tqdm |
|
from transformers.trainer_utils import set_seed |
|
|
|
from typing import Tuple, List, Union, Iterable |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedTokenizer |
|
from transformers import logging |
|
from transformers.generation import LogitsProcessor |
|
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List |
|
HistoryType = List[Tuple[str, str]] |
|
TokensType = List[int] |
|
BatchTokensType = List[List[int]] |
|
|
|
def make_context( |
|
tokenizer: PreTrainedTokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = None, |
|
system: str = "", |
|
max_window_size: int = 6144, |
|
chat_format: str = "chatml", |
|
): |
|
if history is None: |
|
history = [] |
|
|
|
im_start, im_end = "<|im_start|>", "<|im_end|>" |
|
im_start_tokens = [tokenizer.im_start_id] |
|
im_end_tokens = [tokenizer.im_end_id] |
|
nl_tokens = tokenizer.encode("\n") |
|
|
|
def _tokenize_str(role, content): |
|
return f"{role}\n{content}", tokenizer.encode( |
|
role |
|
) + nl_tokens + tokenizer.encode(content) |
|
|
|
system_text, system_tokens_part = _tokenize_str("system", system) |
|
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens |
|
|
|
raw_text = "" |
|
context_tokens = [] |
|
|
|
for turn_query, turn_response in reversed(history): |
|
query_text, query_tokens_part = _tokenize_str("user", turn_query) |
|
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens |
|
response_text, response_tokens_part = _tokenize_str( |
|
"assistant", turn_response |
|
) |
|
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens |
|
|
|
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens |
|
prev_chat = ( |
|
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}" |
|
) |
|
|
|
current_context_size = ( |
|
len(system_tokens) + len(next_context_tokens) + len(context_tokens) |
|
) |
|
if current_context_size < max_window_size: |
|
context_tokens = next_context_tokens + context_tokens |
|
raw_text = prev_chat + raw_text |
|
else: |
|
break |
|
|
|
context_tokens = system_tokens + context_tokens |
|
raw_text = f"{im_start}{system_text}{im_end}" + raw_text |
|
context_tokens += ( |
|
nl_tokens |
|
+ im_start_tokens |
|
+ _tokenize_str("user", query)[1] |
|
+ im_end_tokens |
|
+ nl_tokens |
|
+ im_start_tokens |
|
+ tokenizer.encode("assistant") |
|
+ nl_tokens |
|
) |
|
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n" |
|
|
|
return raw_text, context_tokens |
|
|
|
def chat( |
|
model, |
|
tokenizer: PreTrainedTokenizer, |
|
query: str, |
|
history: Optional[HistoryType], |
|
system: str = "You are a helpful assistant.", |
|
append_history: bool = True |
|
) -> Tuple[str, HistoryType]: |
|
|
|
|
|
if history is None: |
|
history = [] |
|
|
|
raw_text, context_tokens = make_context( |
|
tokenizer, |
|
query, |
|
history=history, |
|
system=system, |
|
max_window_size=6144, |
|
chat_format = "chatml", |
|
) |
|
|
|
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]] |
|
input_ids = torch.tensor([context_tokens]).cuda() |
|
outputs = model.generate( |
|
input_ids, |
|
|
|
return_dict_in_generate = False, |
|
) |
|
|
|
response = decode_tokens( |
|
outputs[0], |
|
tokenizer, |
|
raw_text_len=len(raw_text), |
|
context_length=len(context_tokens), |
|
chat_format='chatml', |
|
verbose=False, |
|
) |
|
|
|
if append_history: |
|
history.append((query, response)) |
|
|
|
return response, history |
|
|
|
def decode_tokens( |
|
tokens: Union[torch.LongTensor, TokensType], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
context_length: int, |
|
chat_format: str = "chatml", |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
) -> str: |
|
if torch.is_tensor(tokens): |
|
tokens = tokens.cpu().numpy().tolist() |
|
|
|
|
|
return _decode_chatml( |
|
tokens, |
|
stop_words=[], |
|
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id], |
|
tokenizer=tokenizer, |
|
raw_text_len=raw_text_len, |
|
context_length=context_length, |
|
verbose=verbose, |
|
return_end_reason=return_end_reason, |
|
) |
|
|
|
|
|
def _decode_chatml( |
|
tokens: List[int], |
|
*, |
|
stop_words: List[str], |
|
eod_token_ids: List[int], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
context_length: int, |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
chat_format = "chatml", |
|
): |
|
end_reason = f"Gen length {len(tokens)}" |
|
eod_token_idx = context_length |
|
for eod_token_idx in range(context_length, len(tokens)): |
|
if tokens[eod_token_idx] in eod_token_ids: |
|
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}" |
|
break |
|
|
|
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:] |
|
if verbose: |
|
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:]) |
|
print("\nRaw Generate:", trim_decode_tokens) |
|
print("\nEnd Reason:", end_reason) |
|
for stop_word in stop_words: |
|
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() |
|
trim_decode_tokens = trim_decode_tokens.strip() |
|
if verbose: |
|
print("\nGenerate:", trim_decode_tokens) |
|
|
|
if return_end_reason: |
|
return trim_decode_tokens, end_reason |
|
else: |
|
return trim_decode_tokens |
|
|
|
|
|
|
|
def load_models_tokenizer(args): |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.generation import GenerationConfig |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval() |
|
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True) |
|
model.generation_config.do_sample = False |
|
return model, tokenizer |
|
|
|
|
|
def format_example(line): |
|
example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n" |
|
for choice in choices: |
|
example += f'{choice}. {line[f"{choice}"]}\n' |
|
return example |
|
|
|
|
|
def process_before_extraction(gen, choice_dict): |
|
|
|
|
|
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True): |
|
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE) |
|
gen = pattern.sub(key, gen) |
|
return gen |
|
|
|
def extract_choice(gen, choice_list): |
|
|
|
res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen) |
|
|
|
|
|
if res is None: |
|
res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen) |
|
|
|
|
|
if res is None: |
|
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen) |
|
|
|
|
|
if res is None: |
|
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen) |
|
|
|
if res is None: |
|
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])] |
|
else: |
|
return res.group(1) |
|
|
|
def extract_answer(response, row): |
|
gen = process_before_extraction(response, {choice: row[choice] for choice in choices}) |
|
pred = extract_choice(gen, [row[choice] for choice in choices]) |
|
return pred |
|
|
|
@torch.no_grad() |
|
def eval_subject( |
|
model, |
|
tokenizer, |
|
subject_name, |
|
test_df, |
|
save_result_dir=None, |
|
overwrite=False, |
|
**kwargs |
|
): |
|
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv') |
|
if not overwrite and os.path.exists(result_path): |
|
print(f"{result_path} existed, skip!") |
|
score = [] |
|
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()): |
|
|
|
pred = resultrow['model_output'] |
|
correct = 1 if pred == datarow['answer'] else 0 |
|
score.append(correct) |
|
return score |
|
|
|
result = [] |
|
score = [] |
|
|
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): |
|
question = format_example(row) |
|
|
|
response, history = chat( |
|
model, |
|
tokenizer, |
|
question, |
|
history=None, |
|
) |
|
print(question) |
|
print(response) |
|
pred = extract_answer(response, row) |
|
print(pred) |
|
print("======================") |
|
|
|
if 'answer' in row: |
|
correct = 1 if pred == row['answer'] else 0 |
|
score.append(correct) |
|
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}') |
|
result.append(pred) |
|
|
|
if save_result_dir: |
|
test_df['model_output'] = result |
|
test_df['model_response'] = response |
|
if score: |
|
test_df["correctness"] = score |
|
os.makedirs(save_result_dir, exist_ok=True) |
|
test_df.to_csv(os.path.join( |
|
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False) |
|
|
|
return score |
|
|
|
|
|
def cal_mmlu(res): |
|
acc_sum_dict = dict() |
|
acc_norm_sum_dict = dict() |
|
cnt_dict = dict() |
|
acc_sum = 0. |
|
cnt = 0 |
|
hard_cnt = 0 |
|
hard_acc_sum = 0. |
|
|
|
for class_ in TASK_NAME_MAPPING.keys(): |
|
acc_sum_dict[class_] = 0. |
|
acc_norm_sum_dict[class_] = 0. |
|
cnt_dict[class_] = 0. |
|
|
|
for tt in TASK_NAME_MAPPING[class_]: |
|
acc_sum += sum(res[tt]) |
|
cnt += len(res[tt]) |
|
|
|
acc_sum_dict[class_] += sum(res[tt]) |
|
cnt_dict[class_] += len(res[tt]) |
|
|
|
print('\n\n\n') |
|
for k in TASK_NAME_MAPPING.keys(): |
|
if k in cnt_dict: |
|
print('%s ACC: %.2f ' % ( |
|
k, acc_sum_dict[k] * 100 / cnt_dict[k])) |
|
print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt)) |
|
|
|
|
|
def main(args): |
|
print("loading model weights") |
|
if args.checkpoint_path is not None: |
|
model, tokenizer = load_models_tokenizer(args) |
|
else: |
|
model, tokenizer = None, None |
|
print("model loaded") |
|
|
|
dev_result = {} |
|
for subject_name in tqdm(SUBJECTS): |
|
|
|
|
|
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv') |
|
|
|
|
|
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer']) |
|
|
|
score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite) |
|
dev_result[subject_name] = score |
|
cal_mmlu(dev_result) |
|
|
|
|
|
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'], |
|
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'], |
|
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'], |
|
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']} |
|
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl] |
|
choices = ["A", "B", "C", "D"] |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Test HF checkpoint.') |
|
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat") |
|
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed') |
|
|
|
"""Provide extra arguments required for tasks.""" |
|
group = parser.add_argument_group(title='Evaluation options') |
|
group.add_argument('-d', '--eval_data_path', type=str, |
|
help='Path to eval data') |
|
group.add_argument("--debug", action='store_true', default=False, |
|
help='Print infos.') |
|
group.add_argument("--overwrite", action='store_true', default=False, |
|
help='Overwrite existed results') |
|
|
|
args = parser.parse_args() |
|
set_seed(args.seed) |
|
|
|
main(args) |