import os import pandas as pd import numpy as np import argparse import datasets import torch import re from thefuzz import process from typing import List from tqdm import tqdm from transformers.trainer_utils import set_seed from typing import Tuple, List, Union, Iterable import numpy as np import torch import torch.nn.functional as F from transformers import PreTrainedTokenizer from transformers import logging from transformers.generation import LogitsProcessor from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List HistoryType = List[Tuple[str, str]] TokensType = List[int] BatchTokensType = List[List[int]] def make_context( tokenizer: PreTrainedTokenizer, query: str, history: List[Tuple[str, str]] = None, system: str = "", max_window_size: int = 6144, chat_format: str = "chatml", ): if history is None: history = [] im_start, im_end = "<|im_start|>", "<|im_end|>" im_start_tokens = [tokenizer.im_start_id] im_end_tokens = [tokenizer.im_end_id] nl_tokens = tokenizer.encode("\n") def _tokenize_str(role, content): return f"{role}\n{content}", tokenizer.encode( role ) + nl_tokens + tokenizer.encode(content) system_text, system_tokens_part = _tokenize_str("system", system) system_tokens = im_start_tokens + system_tokens_part + im_end_tokens raw_text = "" context_tokens = [] for turn_query, turn_response in reversed(history): query_text, query_tokens_part = _tokenize_str("user", turn_query) query_tokens = im_start_tokens + query_tokens_part + im_end_tokens response_text, response_tokens_part = _tokenize_str( "assistant", turn_response ) response_tokens = im_start_tokens + response_tokens_part + im_end_tokens next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens prev_chat = ( f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}" ) current_context_size = ( len(system_tokens) + len(next_context_tokens) + len(context_tokens) ) if current_context_size < max_window_size: context_tokens = next_context_tokens + context_tokens raw_text = prev_chat + raw_text else: break context_tokens = system_tokens + context_tokens raw_text = f"{im_start}{system_text}{im_end}" + raw_text context_tokens += ( nl_tokens + im_start_tokens + _tokenize_str("user", query)[1] + im_end_tokens + nl_tokens + im_start_tokens + tokenizer.encode("assistant") + nl_tokens ) raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n" return raw_text, context_tokens def chat( model, tokenizer: PreTrainedTokenizer, query: str, history: Optional[HistoryType], system: str = "You are a helpful assistant.", append_history: bool = True ) -> Tuple[str, HistoryType]: if history is None: history = [] raw_text, context_tokens = make_context( tokenizer, query, history=history, system=system, max_window_size=6144, chat_format = "chatml", ) stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]] input_ids = torch.tensor([context_tokens]).cuda() outputs = model.generate( input_ids, # stop_words_ids = stop_words_ids, return_dict_in_generate = False, ) response = decode_tokens( outputs[0], tokenizer, raw_text_len=len(raw_text), context_length=len(context_tokens), chat_format='chatml', verbose=False, ) if append_history: history.append((query, response)) return response, history def decode_tokens( tokens: Union[torch.LongTensor, TokensType], tokenizer: PreTrainedTokenizer, raw_text_len: int, context_length: int, chat_format: str = "chatml", verbose: bool = False, return_end_reason: bool = False, ) -> str: if torch.is_tensor(tokens): tokens = tokens.cpu().numpy().tolist() return _decode_chatml( tokens, stop_words=[], eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id], tokenizer=tokenizer, raw_text_len=raw_text_len, context_length=context_length, verbose=verbose, return_end_reason=return_end_reason, ) def _decode_chatml( tokens: List[int], *, stop_words: List[str], eod_token_ids: List[int], tokenizer: PreTrainedTokenizer, raw_text_len: int, context_length: int, verbose: bool = False, return_end_reason: bool = False, chat_format = "chatml", ): end_reason = f"Gen length {len(tokens)}" eod_token_idx = context_length for eod_token_idx in range(context_length, len(tokens)): if tokens[eod_token_idx] in eod_token_ids: end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}" break trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:] if verbose: print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:]) print("\nRaw Generate:", trim_decode_tokens) print("\nEnd Reason:", end_reason) for stop_word in stop_words: trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() trim_decode_tokens = trim_decode_tokens.strip() if verbose: print("\nGenerate:", trim_decode_tokens) if return_end_reason: return trim_decode_tokens, end_reason else: return trim_decode_tokens def load_models_tokenizer(args): from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval() model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True) model.generation_config.do_sample = False # use greedy decoding return model, tokenizer def process_before_extraction(gen, question, choice_dict): # Example Prompt: # 关于传输层的面向连接服务的特性是____。 # A. 既不保证可靠,也不保证按序交付 # B. 不保证可靠,但保证按序交付 # C. 保证可靠,但不保证按序交付 # D. 既保证可靠,也保证按序交付 # Example Model Output: # 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付 # Processed Output: # 答案是D question_split = question.rstrip("。").split("。")[-1].split("_") # replacing the question if len(question_split[0].strip()) > 4: gen = gen.replace(question_split[0], "答案是") if len(question_split[-1].strip()) > 4: gen = gen.replace(question_split[-1], "") # replace the choice by letter in the generated sentence # from longest one to shortest one for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True): gen = gen.replace(val.rstrip("。"), key) return gen def count_substr(gen, pattern): return len(re.findall(pattern, gen)) def extract_choice(gen, prompt, choice_list): # 答案是A | 选项是A | 应该选A选项 res = re.search( r"(?:(?:选|选择|选定)[::]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$|:|:|\)|))", gen, ) # A选项正确 | A选项符合题意 if res is None: res = re.search( r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)", gen, ) # 直接输出 A if res is None: res = re.search(r"^[\((]?(A|B|C|D)(?:。|\)|)|\.|,|,|.|:|:|$)", gen) # 获取第一个出现的字母 if res is None: res = re.search(r"(? 0: print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt)) print("AVERAGE acc:%.2f " % (acc_sum / cnt)) TASK_NAME_MAPPING = { "computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"], "operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"], "computer_architecture": [ "Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM", ], "college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"], "college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"], "college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"], "advanced_mathematics": [ "Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM", ], "probability_and_statistics": [ "Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM", ], "discrete_mathematics": [ "Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM", ], "electrical_engineer": [ "Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM", ], "metrology_engineer": [ "Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM", ], "high_school_mathematics": [ "High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM", ], "high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"], "high_school_chemistry": [ "High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM", ], "high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"], "middle_school_mathematics": [ "Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM", ], "middle_school_biology": [ "Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM", ], "middle_school_physics": [ "Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM", ], "middle_school_chemistry": [ "Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM", ], "veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"], "college_economics": [ "College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science", ], "business_administration": [ "Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science", ], "marxism": [ "Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science", ], "mao_zedong_thought": [ "Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science", ], "education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"], "teacher_qualification": [ "Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science", ], "high_school_politics": [ "High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science", ], "high_school_geography": [ "High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science", ], "middle_school_politics": [ "Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science", ], "middle_school_geography": [ "Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science", ], "modern_chinese_history": [ "Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities", ], "ideological_and_moral_cultivation": [ "Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities", ], "logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"], "law": ["Law", "\u6cd5\u5b66", "Humanities"], "chinese_language_and_literature": [ "Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities", ], "art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"], "professional_tour_guide": [ "Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities", ], "legal_professional": [ "Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities", ], "high_school_chinese": [ "High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities", ], "high_school_history": [ "High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities", ], "middle_school_history": [ "Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities", ], "civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"], "sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"], "plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"], "basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"], "clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"], "urban_and_rural_planner": [ "Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other", ], "accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"], "fire_engineer": [ "Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other", ], "environmental_impact_assessment_engineer": [ "Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other", ], "tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"], "physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"], } hard_list = [ "advanced_mathematics", "discrete_mathematics", "probability_and_statistics", "college_physics", "college_chemistry", "high_school_mathematics", "high_school_physics", "high_school_chemistry", ] choices = ["A", "B", "C", "D"] def main(args): print("loading model weights") if args.checkpoint_path: model, tokenizer = load_models_tokenizer(args) else: model, tokenizer = None, None print("model loaded") dev_result = {} for subject_name in tqdm(TASK_NAME_MAPPING.keys()): val_file_path = os.path.join( args.eval_data_path, "val", f"{subject_name}_val.csv" ) val_df = pd.read_csv(val_file_path) score = eval_subject( model, tokenizer, subject_name, val_df, save_result_dir="outs_chat/ceval_eval_result", overwrite=args.overwrite, ) dev_result[subject_name] = score cal_ceval(dev_result) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Test HF checkpoint.") parser.add_argument( "-c", "--checkpoint-path", type=str, help="Checkpoint path", default="Qwen/Qwen-7B-Chat", ) parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed") # Provide extra arguments required for tasks group = parser.add_argument_group(title="Evaluation options") group.add_argument( "-d", "--eval_data_path", type=str, required=True, help="Path to eval data" ) group.add_argument( "--debug", action="store_true", default=False, help="Print infos." ) group.add_argument( "--overwrite", action="store_true", default=False, help="Overwrite existed results", ) args = parser.parse_args() set_seed(args.seed) main(args)