Edit model card

bert_large_yc_recipe_30

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 121 0.0026
No log 2.0 242 0.0006
No log 3.0 363 0.0001
No log 4.0 484 0.0000
0.057 5.0 605 0.0000
0.057 6.0 726 0.0000
0.057 7.0 847 0.0000
0.057 8.0 968 0.0000
0.0002 9.0 1089 0.0001
0.0002 10.0 1210 0.0001
0.0002 11.0 1331 0.0002
0.0002 12.0 1452 0.0001
0.0002 13.0 1573 0.0001
0.0002 14.0 1694 0.0001
0.0002 15.0 1815 0.0001
0.0002 16.0 1936 0.0001
0.0 17.0 2057 0.0001
0.0 18.0 2178 0.0001
0.0 19.0 2299 0.0001
0.0 20.0 2420 0.0001
0.0 21.0 2541 0.0001
0.0 22.0 2662 0.0001
0.0 23.0 2783 0.0001
0.0 24.0 2904 0.0001
0.0 25.0 3025 0.0000
0.0 26.0 3146 0.0000
0.0 27.0 3267 0.0000
0.0 28.0 3388 0.0000
0.0 29.0 3509 0.0000
0.0 30.0 3630 0.0000

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.