Cesar42 commited on
Commit
449bf36
·
1 Parent(s): d5a5c8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -15
README.md CHANGED
@@ -41,23 +41,60 @@ batch_size: 64
41
  ## How to Use the model:
42
  ```python
43
  from transformers import pipeline
44
- classifier = pipeline("text-classification",model='Cesar42/bert-base-uncased-emotion_v2', return_all_scores=True)
45
- prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
46
- print(prediction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- """
49
- output:
50
- [[
51
- {'label': 'sadness', 'score': 0.0005138228880241513},
52
- {'label': 'joy', 'score': 0.9972520470619202},
53
- {'label': 'love', 'score': 0.0007443308713845909},
54
- {'label': 'anger', 'score': 0.0007404946954920888},
55
- {'label': 'fear', 'score': 0.00032938539516180754},
56
- {'label': 'surprise', 'score': 0.0004197491507511586}
57
- ]]
58
- """
59
  ```
60
-
 
 
 
 
 
 
 
 
 
61
  ### Referece
62
 
63
  * bhadresh-savani/bert-base-uncased-emotion
 
41
  ## How to Use the model:
42
  ```python
43
  from transformers import pipeline
44
+ model_path = "daveni/twitter-xlm-roberta-emotion-es"
45
+ emotion_analysis = pipeline("text-classification", framework="pt", model=model_path, tokenizer=model_path)
46
+ emotion_analysis("Einstein dijo: Solo hay dos cosas infinitas, el universo y los pinches anuncios de bitcoin en Twitter. Paren ya carajo aaaaaaghhgggghhh me quiero murir")
47
+ ```
48
+ ```
49
+ [{'label': 'anger', 'score': 0.48307016491889954}]
50
+ ```
51
+ ## Full classification example
52
+ ```python
53
+ from transformers import AutoModelForSequenceClassification
54
+ from transformers import AutoTokenizer, AutoConfig
55
+ import numpy as np
56
+ from scipy.special import softmax
57
+ # Preprocess text (username and link placeholders)
58
+ def preprocess(text):
59
+ new_text = []
60
+ for t in text.split(" "):
61
+ t = '@user' if t.startswith('@') and len(t) > 1 else t
62
+ t = 'http' if t.startswith('http') else t
63
+ new_text.append(t)
64
+ return " ".join(new_text)
65
+ model_path = "Cesar42/bert-base-uncased-emotion_v2"
66
+ tokenizer = AutoTokenizer.from_pretrained(model_path )
67
+ config = AutoConfig.from_pretrained(model_path )
68
+ # PT
69
+ model = AutoModelForSequenceClassification.from_pretrained(model_path )
70
+ text = "Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal."
71
+ text = preprocess(text)
72
+ print(text)
73
+ encoded_input = tokenizer(text, return_tensors='pt')
74
+ output = model(**encoded_input)
75
+ scores = output[0][0].detach().numpy()
76
+ scores = softmax(scores)
77
+ # Print labels and scores
78
+ ranking = np.argsort(scores)
79
+ ranking = ranking[::-1]
80
+ for i in range(scores.shape[0]):
81
+ l = config.id2label[ranking[i]]
82
+ s = scores[ranking[i]]
83
+ print(f"{i+1}) {l} {np.round(float(s), 4)}")
84
+ ```
85
+ Output:
86
 
 
 
 
 
 
 
 
 
 
 
 
87
  ```
88
+ Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal.
89
+ 1) joy 0.7887
90
+ 2) others 0.1679
91
+ 3) surprise 0.0152
92
+ 4) sadness 0.0145
93
+ 5) anger 0.0077
94
+ 6) disgust 0.0033
95
+ 7) fear 0.0027
96
+ ```
97
+
98
  ### Referece
99
 
100
  * bhadresh-savani/bert-base-uncased-emotion