--- library_name: transformers tags: - generated_from_trainer model-index: - name: speecht5_finetuned_tr_commonvoice results: [] language: - tr base_model: - microsoft/speecht5_tts --- # speecht5_finetuned_tr_commonvoice This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5179 - eval_runtime: 361.0936 - eval_samples_per_second: 32.161 - eval_steps_per_second: 16.082 - epoch: 1.6783 - step: 2000 ## Model description ```python import torch from datasets import load_dataset import soundfile as sf embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) from transformers import pipeline pipe = pipeline("text-to-audio", model="Chan-Y/speecht5_finetuned_tr_commonvoice") text = "bugün okula erken geldim, çalışmam lazım." result = pipe(text, forward_params={"speaker_embeddings": speaker_embedding}) sf.write("speech.wav", result["audio"], samplerate=result["sampling_rate"]) from IPython.display import Audio Audio("speech.wav") ``` ## Training and evaluation data I used [CommonVoice Turkish Corpus 19.0](https://commonvoice.mozilla.org/tr/datasets) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3