File size: 1,776 Bytes
6fd2aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---

library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_tr_commonvoice_2
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_tr_commonvoice_2



This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.

It achieves the following results on the evaluation set:

- Loss: 0.5934



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 500
- training_steps: 4000

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step | Validation Loss |

|:-------------:|:------:|:----:|:---------------:|

| 0.7533        | 1.2972 | 1000 | 0.6445          |

| 0.6745        | 2.5945 | 2000 | 0.6106          |

| 0.6535        | 3.8917 | 3000 | 0.5953          |

| 0.6593        | 5.1889 | 4000 | 0.5934          |





### Framework versions



- Transformers 4.46.3

- Pytorch 2.5.1+cu124

- Datasets 3.1.0

- Tokenizers 0.20.3