--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 ## Get it started ```python from peft import PeftModel, PeftConfig from huggingface_hub import login from transformers import AutoModelForCausalLM, AutoTokenizer, AddedToken login("[YOUR HF TOKEN HERE FOR USING LLAMA]") config = PeftConfig.from_pretrained("ChangeIsKey/llama-7b-lexical-substitution") base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map='auto') tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", use_fast=False, trust_remote_code=True) tokenizer.add_special_tokens({ "additional_special_tokens":[AddedToken("<|s|>"), AddedToken("<|answer|>"), AddedToken("<|end|>")]}) if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.padding_side = 'left' base_model.resize_token_embeddings(len(tokenizer)) model = PeftModel.from_pretrained(base_model, "ChangeIsKey/llama-7b-lexical-substitution") model.eval() ```