--- library_name: transformers base_model: data/OpenELM-1_1B-SFT tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: OpenELM-1_1B-DPO-2 results: [] --- # OpenELM-1_1B-DPO-2 This model is a fine-tuned version of [data/OpenELM-1_1B-SFT](https://huggingface.co/data/OpenELM-1_1B-SFT) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.7793 - Rewards/chosen: -11.75 - Rewards/rejected: -13.6875 - Rewards/accuracies: 0.7227 - Rewards/margins: 1.9141 - Logps/rejected: -564.0 - Logps/chosen: -556.0 - Logits/rejected: -13.0625 - Logits/chosen: -13.3125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6791 | 1.0 | 1911 | 0.7098 | -10.8125 | -11.9375 | 0.6992 | 1.1328 | -528.0 | -536.0 | -12.5625 | -12.6875 | | 0.0506 | 2.0 | 3822 | 0.7793 | -11.75 | -13.6875 | 0.7227 | 1.9141 | -564.0 | -556.0 | -13.0625 | -13.3125 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.21.0 - Tokenizers 0.19.1