File size: 7,481 Bytes
079d30d
 
8c9b91c
079d30d
8c9b91c
079d30d
 
 
8c9b91c
 
 
 
 
079d30d
 
 
 
 
 
 
 
 
 
8c9b91c
079d30d
8c9b91c
079d30d
8c9b91c
079d30d
8c9b91c
079d30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
library_name: transformers
base_model: data/OpenELM-1_1B-SFT-2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: OpenELM-1_1B-DPO-full-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenELM-1_1B-DPO-full-2

This model is a fine-tuned version of [data/OpenELM-1_1B-SFT-2](https://huggingface.co/data/OpenELM-1_1B-SFT-2) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7945
- Rewards/chosen: -8.3125
- Rewards/rejected: -10.4375
- Rewards/accuracies: 0.7324
- Rewards/margins: 2.1406
- Logps/rejected: -1336.0
- Logps/chosen: -1144.0
- Logits/rejected: 5.5
- Logits/chosen: 3.5938

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6007        | 0.1047 | 100  | 0.6140          | -1.2344        | -1.5781          | 0.6562             | 0.3418          | -444.0         | -438.0       | -8.5            | -8.8125       |
| 0.591         | 0.2093 | 200  | 0.6025          | -1.9297        | -2.4688          | 0.6895             | 0.5312          | -532.0         | -508.0       | -6.9375         | -7.5312       |
| 0.6351        | 0.3140 | 300  | 0.5962          | -2.2344        | -2.6875          | 0.6875             | 0.4512          | -556.0         | -540.0       | -4.9062         | -5.7812       |
| 0.6031        | 0.4186 | 400  | 0.5900          | -1.7109        | -2.2812          | 0.6875             | 0.5625          | -512.0         | -486.0       | -6.25           | -7.2188       |
| 0.5813        | 0.5233 | 500  | 0.5824          | -2.25          | -2.8125          | 0.7051             | 0.5547          | -568.0         | -540.0       | -3.6406         | -4.8125       |
| 0.5376        | 0.6279 | 600  | 0.5624          | -2.625         | -3.3281          | 0.7012             | 0.7109          | -620.0         | -576.0       | 2.4219          | 0.9258        |
| 0.5582        | 0.7326 | 700  | 0.5655          | -3.2812        | -4.0938          | 0.7051             | 0.8008          | -696.0         | -644.0       | -0.3281         | -1.7891       |
| 0.5437        | 0.8373 | 800  | 0.5704          | -2.8281        | -3.4375          | 0.6992             | 0.6172          | -632.0         | -596.0       | -1.6719         | -3.1719       |
| 0.567         | 0.9419 | 900  | 0.5633          | -3.1406        | -3.9062          | 0.7227             | 0.7539          | -676.0         | -628.0       | -1.0781         | -2.4219       |
| 0.223         | 1.0466 | 1000 | 0.5835          | -4.1562        | -5.25            | 0.7461             | 1.0859          | -812.0         | -732.0       | 3.375           | 1.7734        |
| 0.1774        | 1.1512 | 1100 | 0.6000          | -4.8438        | -5.9688          | 0.7227             | 1.1328          | -884.0         | -800.0       | 2.8906          | 0.9844        |
| 0.1868        | 1.2559 | 1200 | 0.5954          | -4.9062        | -6.0625          | 0.7188             | 1.1484          | -892.0         | -804.0       | 3.5             | 1.9609        |
| 0.1871        | 1.3605 | 1300 | 0.6086          | -5.3438        | -6.5             | 0.7324             | 1.1562          | -932.0         | -848.0       | 3.1719          | 1.3281        |
| 0.1651        | 1.4652 | 1400 | 0.5995          | -5.375         | -6.4688          | 0.7090             | 1.0938          | -932.0         | -852.0       | 2.9375          | 1.0625        |
| 0.1557        | 1.5699 | 1500 | 0.6073          | -5.3125        | -6.5938          | 0.7012             | 1.2656          | -944.0         | -848.0       | 1.9219          | -0.1582       |
| 0.2145        | 1.6745 | 1600 | 0.6256          | -5.1875        | -6.4688          | 0.7031             | 1.2656          | -932.0         | -832.0       | 3.0469          | 0.9570        |
| 0.1666        | 1.7792 | 1700 | 0.6223          | -5.5312        | -6.8438          | 0.7246             | 1.3047          | -972.0         | -868.0       | 3.8906          | 1.7969        |
| 0.164         | 1.8838 | 1800 | 0.6084          | -4.6875        | -5.9375          | 0.7383             | 1.2266          | -880.0         | -784.0       | 2.6562          | 0.5117        |
| 0.1552        | 1.9885 | 1900 | 0.6211          | -5.4375        | -6.7812          | 0.7363             | 1.3359          | -964.0         | -856.0       | 2.5469          | 0.4004        |
| 0.0204        | 2.0931 | 2000 | 0.6830          | -6.4062        | -8.0             | 0.7383             | 1.6328          | -1088.0        | -952.0       | 4.1562          | 2.1719        |
| 0.0205        | 2.1978 | 2100 | 0.8096          | -9.0           | -11.125          | 0.7168             | 2.1094          | -1400.0        | -1216.0      | 5.4375          | 3.5469        |
| 0.0228        | 2.3025 | 2200 | 0.8077          | -8.625         | -10.8125         | 0.7305             | 2.1562          | -1368.0        | -1176.0      | 5.25            | 3.3281        |
| 0.0148        | 2.4071 | 2300 | 0.7832          | -8.1875        | -10.1875         | 0.7227             | 2.0469          | -1304.0        | -1128.0      | 5.25            | 3.3906        |
| 0.0202        | 2.5118 | 2400 | 0.7835          | -8.1875        | -10.25           | 0.7344             | 2.0781          | -1312.0        | -1136.0      | 5.3125          | 3.375         |
| 0.01          | 2.6164 | 2500 | 0.7940          | -8.1875        | -10.3125         | 0.7363             | 2.1094          | -1320.0        | -1136.0      | 5.4688          | 3.5312        |
| 0.0153        | 2.7211 | 2600 | 0.8036          | -8.5625        | -10.75           | 0.7324             | 2.1719          | -1360.0        | -1168.0      | 5.625           | 3.75          |
| 0.0205        | 2.8257 | 2700 | 0.7961          | -8.375         | -10.5            | 0.7344             | 2.1562          | -1336.0        | -1152.0      | 5.5312          | 3.6406        |
| 0.0184        | 2.9304 | 2800 | 0.7947          | -8.3125        | -10.5            | 0.7324             | 2.1562          | -1336.0        | -1144.0      | 5.5             | 3.5938        |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.21.0
- Tokenizers 0.19.1