Safetensors
LauraWang1107 commited on
Commit
a511921
1 Parent(s): bc66c19

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -184
README.md CHANGED
@@ -1,199 +1,47 @@
 
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
1
+
2
  ---
3
+ license: cc-by-nc-nd-4.0
 
4
  ---
5
 
6
+ # PepDoRA: A Unified Peptide-Specific Language Model via Weight-Decomposed Low-Rank Adaptation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64cd5b3f0494187a9e8b7c69/fzsxEjCdBJfKa6T44Tjc8.png)
9
 
10
+ In this work, we introduce **PepDoRA**, a SMILES transformer that fine-tunes the state-of-the-art [ChemBERTa-77M-MLM](https://huggingface.co/DeepChem/ChemBERTa-77M-MLM) transformer on modified peptide SMILES via [DoRA](https://nbasyl.github.io/DoRA-project-page/), a novel PEFT method that incorporates weight decomposition. These representations can be leveraged for numerous downstream tasks, including membrane permeability prediction and target binding assessment, for both unmodified and modified peptide sequences.
11
 
12
+ Here's how to extract PepDoRA embeddings for your input peptide:
13
 
14
+ ```
15
+ import torch
16
+ from transformers import AutoTokenizer, AutoModel
17
 
18
+ # Load the model and tokenizer
19
+ model_name = "ChatterjeeLab/PepDoRA"
20
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
21
+ model = AutoModel.from_pretrained(model_name, output_hidden_states=True)
22
+
23
 
24
+ # Input peptide sequence
25
+ peptide = "CC(C)C[C@H]1NC(=O)[C@@H](C)NCCCCCCNC(=O)[C@H](CO)NC1=O"
26
 
27
+ # Tokenize the peptide
28
+ inputs = tokenizer(peptide, return_tensors="pt")
29
 
30
+ # Get the hidden states (embeddings) from the model
31
+ with torch.no_grad():
32
+ outputs = model(**inputs,output_hidden_states=True)
33
+
34
+ # Extract the embeddings from the last hidden layer
35
+ embeddng=outputs.last_hidden_state
36
 
37
+ # Print the embedding shape (or the embedding itself)
38
+ print(outputs.last_hidden_state.shape)
39
+ print(embeddng)
40
+ ```
41
 
42
+ ## Repository Authors
43
 
44
+ [Leyao Wang](mailto:leyao.wang@vanderbilt.edu), Undergraduate Intern in the Chatterjee Lab <br>
45
+ [Pranam Chatterjee](mailto:pranam.chatterjee@duke.edu), Assistant Professor at Duke University
46
 
47
+ Reach out to us with any questions!