whisper-tiny-tr / README.md
CheeLi03's picture
Upload tokenizer
954ea57 verified
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - tr
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: tr_tr
          split: None
          args: 'config: tr split: test'
        metrics:
          - type: wer
            value: 38.612321095208465
            name: Wer

Whisper Tiny - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6536
  • Wer: 38.6123

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2876 5.5866 1000 0.5633 34.9642
0.0496 11.1732 2000 0.5952 33.5641
0.016 16.7598 3000 0.6390 36.2166
0.0099 22.3464 4000 0.6536 38.6123

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1