ChenMnZ commited on
Commit
f461059
1 Parent(s): 32d7db2

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # EfficientQAT
2
+
3
+ [EfficientQAT](https://arxiv.org/abs/2407.11062) is a novel quantization technical, which pushes the limitation of uniform (INT) quantization in an efficient manner. Due to the leverage of standard INT quantization, the quantized model of EfficientQAT can also be transferred into other formats, such as GPTQ, BitBLAS, etc.
4
+
5
+
6
+ In this repo, we provide three type checkpoints, one is EQAT, indicats the original checkpoints of EfficientQAT. The other two are GPTQ and BitBLAS respectively.
7
+
8
+
9
+ ## Model Zoo
10
+
11
+ We provide a number of prequantized EfficientQAT models as follows:
12
+
13
+ - WikiText2 PPL is measured in 2048 context length.
14
+ - Avg. Accuracy indicate the average accuracy in 5 zero-shot reasoning tasks (WinoGrande,PIQA,HellaSwag,Arc-Easy, Arc-Challenge) with [lm-eval v0.4.2](https://github.com/EleutherAI/lm-evaluation-harness).
15
+ - 1GB = $10^9$ Bit
16
+ - Hub Link: EQAT indicates the original checkpoints. We also transfer the checkpoints into GPTQ and BitBLAS formats, which can be loaded directly through [GPTQModel](https://github.com/ModelCloud/GPTQModel). (PS: [GPTQModel](https://github.com/ModelCloud/GPTQModel) is a official bug-fixed repo of AutoGPTQ, which would be merged into [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) in future.)
17
+
18
+ | Model | Quantization | WikiText2 PPL | Avg. Accuracy | Model Size (GB) | Hub link|
19
+ |-------|--------------|---------------|---------------|-----------------|----------|
20
+ Llama-2-7B|fp16|5.47|64.86|13.2|-|
21
+ Llama-2-7B|w4g128|5.53|64.27|3.7|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w4g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-2-7b-EfficientQAT-w4g128-BitBLAS)|
22
+ Llama-2-7B|w3g128|5.81|64.02|3.1|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w3g128)|
23
+ Llama-2-7B|w2g64|6.86|60.14|2.3|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w2g64)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w2g64-GPTQ)\|[BitBLAS](Llama-2-7b-EfficientQAT-w2g64-BitBLAS)|
24
+ Llama-2-7B|w2g128|7.17|59.50|2.2|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w2g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w2g128-GPTQ)\|[BitBLAS](Llama-2-7b-EfficientQAT-w2g128-BitBLAS)|
25
+ Llama-2-13B|fp16|4.88|67.81|25.4|-|
26
+ Llama-2-13B|w4g128|4.93|67.52|6.8|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-13b-EfficientQAT-w4g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-7b-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-2-7b-EfficientQAT-w4g128-BitBLAS)|
27
+ Llama-2-13B|w3g128|5.12|67.28|5.6|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-13b-EfficientQAT-w3g128)|
28
+ Llama-2-13B|w2g64|5.96|64.88|4.0|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-13b-EfficientQAT-w2g64)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-13b-EfficientQAT-w2g64-GPTQ)\|[BitBLAS](Llama-2-13b-EfficientQAT-w2g64-BitBLAS)|
29
+ Llama-2-13B|w2g128|6.08|63.88|3.8|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-13b-EfficientQAT-w2g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-13b-EfficientQAT-w2g128-GPTQ)\|[BitBLAS](Llama-2-13b-EfficientQAT-w2g128-BitBLAS)|
30
+ Llama-2-70B|fp16|3.32|72.41|131.6|-|
31
+ Llama-2-70B|w4g128|3.39|72.62|35.8|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-70b-EfficientQAT-w4g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-70b-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-2-70b-EfficientQAT-w4g128-BitBLAS)|
32
+ Llama-2-70B|w3g128|3.61|71.76|29.1|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-70b-EfficientQAT-w3g128)|
33
+ Llama-2-70B|w2g64|4.52|69.48|20.1|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-70b-EfficientQAT-w2g64)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-70b-EfficientQAT-w2g64-GPTQ)\|[BitBLAS](Llama-2-70b-EfficientQAT-w2g64-BitBLAS)|
34
+ Llama-2-70B|w2g128|4.61|68.93|18.9|[EQAT](https://huggingface.co/ChenMnZ/Llama-2-70b-EfficientQAT-w2g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-2-70b-EfficientQAT-w2g128-GPTQ)\|[BitBLAS](Llama-2-70b-EfficientQAT-w2g128-BitBLAS)|
35
+ Llama-3-8B|fp16|6.14|68.58|13.0|-|
36
+ Llama-3-8B|w4g128|6.47|68.43|5.4|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-EfficientQAT-w4g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-8b-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-3-8b-EfficientQAT-w4g128-BitBLAS)|
37
+ Llama-3-8B|w3g128|7.09|67.35|4.7|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-EfficientQAT-w3g128)|
38
+ Llama-3-8B|w2g64|9.41|60.76|3.9|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-EfficientQAT-w2g64)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-8b-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-3-8b-EfficientQAT-w2g64-BitBLAS)|
39
+ Llama-3-8B|w2g128|9.80|59.36|3.8|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-EfficientQAT-w2g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-8b-EfficientQAT-w2g128-GPTQ)\|[BitBLAS](Llama-3-8b-EfficientQAT-w2g128-BitBLAS)|
40
+ Llama-3-70B|fp16|2.85|75.33|137.8|-|
41
+ Llama-3-70B|w4g128|3.17|74.57|38.9|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-EfficientQAT-w4g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-70b-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-3-70b-EfficientQAT-w4g128-BitBLAS)|
42
+ Llama-3-70B|w3g128|4.19|72.42|32.2|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-EfficientQAT-w3g128)|
43
+ Llama-3-70B|w2g64|6.08|67.89|23.2|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-EfficientQAT-w2g64)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-70b-EfficientQAT-w2g64-GPTQ)|
44
+ Llama-3-70B|w2g128|6.38|67.57|22.0|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-EfficientQAT-w2g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-70b-EfficientQAT-w2g128-GPTQ)\|[BitBLAS](Llama-3-70b-EfficientQAT-w2g128-BitBLAS)|
45
+ Llama-3-8B-Instruct|fp16|8.29|68.43|13.0|-|
46
+ Llama-3-8B-Instruct|w4g128|7.93|68.39|5.4|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-instruct-EfficientQAT-w4g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-8b-instruct-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-3-8b-instruct-EfficientQAT-w4g128-BitBLAS)|
47
+ Llama-3-8B-Instruct|w3g128|8.55|67.24|4.7|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-instruct-EfficientQAT-w3g128)|
48
+ Llama-3-8B-Instruct|w2g64|11.19|60.66|3.9|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-instruct-EfficientQAT-w2g64)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-8b-instruct-EfficientQAT-w2g64-GPTQ)\|[BitBLAS](Llama-3-8b-instruct-EfficientQAT-w2g64-BitBLAS)|
49
+ Llama-3-8B-Instruct|w2g128|11.73|60.16|3.8|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-8b-instruct-EfficientQAT-w2g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-8b-instruct-EfficientQAT-w2g128-GPTQ)\|[BitBLAS](Llama-3-8b-instruct-EfficientQAT-w2g128-BitBLAS)|
50
+ Llama-3-70B-Instruct|fp16|5.33|73.78|137.8|-|
51
+ Llama-3-70B-Instruct|w4g128|5.35|73.47|38.9|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-instruct-EfficientQAT-w4g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-70b-instruct-EfficientQAT-w4g128-GPTQ)\|[BitBLAS](Llama-3-70b-instruct-EfficientQAT-w4g128-BitBLAS)|
52
+ Llama-3-70B-Instruct|w3g128|5.65|72.87|32.2|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-instruct-EfficientQAT-w3g128)|
53
+ Llama-3-70B-Instruct|w2g64|7.86|67.64|23.2|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-instruct-EfficientQAT-w2g64)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-70b-instruct-EfficientQAT-w2g64-GPTQ)\|[BitBLAS](Llama-3-70b-instruct-EfficientQAT-w2g64-BitBLAS)|
54
+ Llama-3-70B-Instruct|w2g128|8.14|67.54|22.0|[EQAT](https://huggingface.co/ChenMnZ/Llama-3-70b-instruct-EfficientQAT-w2g128)\|[GPTQ](https://huggingface.co/ChenMnZ/Llama-3-70b-instruct-EfficientQAT-w2g128-GPTQ)\|[BitBLAS](Llama-3-70b-instruct-EfficientQAT-w2g128-BitBLAS)|
55
+ Mistral-Large-Instruct-2407|fp16|2.74|77.76|228.5|-|
56
+ Mistral-Large-Instruct-2407|w2g64|5.58|73.54|35.5|[GPTQ](https://huggingface.co/ChenMnZ/Mistral-Large-Instruct-2407-EfficientQAT-w2g64-GPTQ)
57
+
58
+ ## Usage of EQAT models
59
+ Please refer [https://github.com/OpenGVLab/EfficientQAT](https://github.com/OpenGVLab/EfficientQAT?tab=readme-ov-file#inference) for details.
60
+
61
+ ## Usage of GPTQ and BitBLAS models
62
+ Firstly, you should install `gptqmodel` package to support GPTQ and BitBLAS quantization format:
63
+ ```
64
+ git clone https://github.com/ModelCloud/GPTQModel.git && cd GPTQModel
65
+ bash install.sh
66
+ ```
67
+ - In our experiences, we test with `gptqmodel v0.9.8`.
68
+
69
+ Below is an example to inference with GPTQ or BitBLAS quantized formats.
70
+ ```Python
71
+ from transformers import AutoTokenizer
72
+ from gptqmodel import GPTQModel
73
+
74
+ quant_dir = "ChenMnZ/Mistral-Large-Instruct-2407-EfficientQAT-w2g64-GPTQ"
75
+
76
+ tokenizer = AutoTokenizer.from_pretrained(quant_dir, use_fast=True)
77
+
78
+
79
+ # load quantized model to the first GPU
80
+ model = GPTQModel.from_quantized(quant_dir)
81
+
82
+ # inference with model.generate
83
+ print(tokenizer.decode(model.generate(**tokenizer("Model quantization is", return_tensors="pt").to(model.device))[0]))
84
+ ```
85
+
86
+
87
+ ## Citation
88
+ If you found this work useful, please consider citing:
89
+ ```
90
+ @article{efficientqat,
91
+ title={EfficientQAT: Efficient Quantization-Aware Training for Large Language Models},
92
+ author={Chen, Mengzhao and Shao, Wenqi and Xu, Peng and Wang, Jiahao and Gao, Peng and Zhang, Kaipeng and Qiao, Yu and Luo, Ping},
93
+ journal={arXiv preprint arXiv:2407.11062},
94
+ year={2024}
95
+ }
96
+ ```
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/cpfs01/user/chenmengzhao/efficientqat_repo/EfficientQAT/output/block_ap_models/Mistral-Large-Instruct-2407-w2g64-wlr2e-6-qlr3e-5",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 12288,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 28672,
13
+ "max_position_embeddings": 131072,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 96,
16
+ "num_hidden_layers": 88,
17
+ "num_key_value_heads": 8,
18
+ "quantization_config": {
19
+ "bits": 2,
20
+ "checkpoint_format": "gptq_v2",
21
+ "damp_percent": 0.01,
22
+ "desc_act": false,
23
+ "group_size": 64,
24
+ "lm_head": false,
25
+ "meta": {
26
+ "quantizer": "gptqmodel:0.9.9-dev0"
27
+ },
28
+ "model_file_base_name": null,
29
+ "model_name_or_path": "/cpfs01/user/chenmengzhao/efficientqat_repo/EfficientQAT/output/block_ap_models/Mistral-Large-Instruct-2407-w2g64-wlr2e-6-qlr3e-5",
30
+ "quant_method": "gptq",
31
+ "static_groups": false,
32
+ "sym": false,
33
+ "true_sequential": true
34
+ },
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_theta": 1000000.0,
37
+ "sliding_window": null,
38
+ "tie_word_embeddings": false,
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.40.0",
41
+ "use_cache": true,
42
+ "vocab_size": 32768
43
+ }
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fbabc09b278287b5b6652cb8260b9211e0626b8ee78d81b0ce12a410f80d504
3
+ size 7968437440
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61b5b6747dec583e0c9e9d1db7f219b6d142d5b082e6009af122f50f6d9793e8
3
+ size 7946161328
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e1f50159b31075db378b22071ce6e28f61f1351caf821a2efd82965fdc3bea9
3
+ size 7992511424
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:380e0a5b019f7dd6c83824c4b8711cd103fb21ae2f35cffbcc61808962635c5c
3
+ size 7914113976
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4b56dc3cc2fa372c76db65303e186be245ac1656ba4d057abc231ebde511586
3
+ size 4562853128
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
quantize_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 2,
3
+ "group_size": 64,
4
+ "desc_act": false,
5
+ "static_groups": false,
6
+ "sym": false,
7
+ "lm_head": false,
8
+ "damp_percent": 0.01,
9
+ "true_sequential": true,
10
+ "model_name_or_path": "/cpfs01/user/chenmengzhao/efficientqat_repo/efficientqat_checkpoints_GPTQ/Mistral-Large-Instruct-2407-EfficientQAT-w2g64-GPTQ",
11
+ "model_file_base_name": "model",
12
+ "quant_method": "gptq",
13
+ "checkpoint_format": "gptq_v2",
14
+ "meta": {
15
+ "quantizer": "gptqmodel:0.9.9-dev0"
16
+ }
17
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f95e28944c062244741268596badc900df86c7f5ded05088d2da22a7379e06
3
+ size 587583
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff