Chirayu commited on
Commit
25c798b
·
1 Parent(s): 90c5f8a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md CHANGED
@@ -1,3 +1,57 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - code
5
  ---
6
+ # What does this model do?
7
+ This model converts the natural language input to Neo4j (Cypher) query. It is a fine-tuned CodeT5+ 220M. This model is a part of nl2query repository which is present at https://github.com/Chirayu-Tripathi/nl2query
8
+
9
+ You can use this model via the github repository or via following code. More information can be found on the repository.
10
+
11
+ ```python
12
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
13
+ import torch
14
+ model = AutoModelForSeq2SeqLM.from_pretrained("Chirayu/nl2cql")
15
+ tokenizer = AutoTokenizer.from_pretrained("Chirayu/nl2cql")
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ model = model.to(device)
18
+
19
+ textual_query = '''cypher: find the outcomes of people who are female and below the age of 32 | case : gender, reportdate, ageunit, reporteroccupation, primaryid, age, eventDate | outcome : code, outcome | relationships : resulted_in'''
20
+
21
+ def generate_query(
22
+ textual_query: str,
23
+ num_beams: int = 10,
24
+ max_length: int = 128,
25
+ repetition_penalty: int = 2.5,
26
+ length_penalty: int = 1,
27
+ early_stopping: bool = True,
28
+ top_p: int = 0.95,
29
+ top_k: int = 50,
30
+ num_return_sequences: int = 1,
31
+ ) -> str:
32
+ input_ids = tokenizer.encode(
33
+ textual_query, return_tensors="pt", add_special_tokens=True
34
+ )
35
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
+ input_ids = input_ids.to(device)
37
+ generated_ids = model.generate(
38
+ input_ids=input_ids,
39
+ num_beams=num_beams,
40
+ max_length=max_length,
41
+ repetition_penalty=repetition_penalty,
42
+ length_penalty=length_penalty,
43
+ early_stopping=early_stopping,
44
+ top_p=top_p,
45
+ top_k=top_k,
46
+ num_return_sequences=num_return_sequences,
47
+ )
48
+ query = [
49
+ tokenizer.decode(
50
+ generated_id,
51
+ skip_special_tokens=True,
52
+ clean_up_tokenization_spaces=True,
53
+ )
54
+ for generated_id in generated_ids
55
+ ][0]
56
+ return query
57
+ ```