ChrisLalk commited on
Commit
240905a
1 Parent(s): c81b7ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -24,7 +24,7 @@ model_description: >-
24
  ---
25
  # Model Card for G-E5-rman-Emotions
26
 
27
- This is basically the German translation of arpanghoshal/EmoRoBERTa. We used the go_emotions dataset, translated it into German and fine-tuned the intfloat/multilingual-e5-large model. So this model allows the classification of **28 emotions** in German Transcripts (**'admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'**). A paper will be published soonish...
28
 
29
 
30
  ## Model Details
@@ -67,7 +67,7 @@ base_path = "/share/users/staff/c/clalk/Emotionen"
67
  model_path = os.path.join(base_path, 'Modell')
68
  file_path = os.path.join(base_path, 'Datensatz')
69
 
70
- MODEL = "intfloat/multilingual-e5-large"
71
  tokenizer = AutoTokenizer.from_pretrained(MODEL, do_lower_case=False)
72
  model = AutoModelForSequenceClassification.from_pretrained(
73
  model_path,
@@ -108,7 +108,8 @@ def infer_texts(texts):
108
  start_time = time.time()
109
  df = df_full
110
 
111
- # Save results in a dict
 
112
  results = []
113
  for index, row in tqdm(df.iterrows(), total=df.shape[0]):
114
  patient_texts = row['Patient']
 
24
  ---
25
  # Model Card for G-E5-rman-Emotions
26
 
27
+ This is basically the German translation of arpanghoshal/EmoRoBERTa. We used the go_emotions dataset, translated it into German and fine-tuned the FacebookAI/xlm-roberta-base model. So this model allows the classification of **28 emotions** in German Transcripts (**'admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'**). A paper will be published soonish...
28
 
29
 
30
  ## Model Details
 
67
  model_path = os.path.join(base_path, 'Modell')
68
  file_path = os.path.join(base_path, 'Datensatz')
69
 
70
+ MODEL = "FacebookAI/xlm-roberta-base"
71
  tokenizer = AutoTokenizer.from_pretrained(MODEL, do_lower_case=False)
72
  model = AutoModelForSequenceClassification.from_pretrained(
73
  model_path,
 
108
  start_time = time.time()
109
  df = df_full
110
 
111
+ # Save results in a dict, here the df contains the additional variables File, Class, session, short_id, long_id, Prediction, hscl-11, and srs.
112
+ # However, only the "Sentence" column with the text is relevant for the pipeline.
113
  results = []
114
  for index, row in tqdm(df.iterrows(), total=df.shape[0]):
115
  patient_texts = row['Patient']