Update README.md
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ model_description: >-
|
|
24 |
---
|
25 |
# Model Card for G-E5-rman-Emotions
|
26 |
|
27 |
-
This is basically the German translation of arpanghoshal/EmoRoBERTa. We used the go_emotions dataset, translated it into German and fine-tuned the
|
28 |
|
29 |
|
30 |
## Model Details
|
@@ -67,7 +67,7 @@ base_path = "/share/users/staff/c/clalk/Emotionen"
|
|
67 |
model_path = os.path.join(base_path, 'Modell')
|
68 |
file_path = os.path.join(base_path, 'Datensatz')
|
69 |
|
70 |
-
MODEL = "
|
71 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, do_lower_case=False)
|
72 |
model = AutoModelForSequenceClassification.from_pretrained(
|
73 |
model_path,
|
@@ -108,7 +108,8 @@ def infer_texts(texts):
|
|
108 |
start_time = time.time()
|
109 |
df = df_full
|
110 |
|
111 |
-
# Save results in a dict
|
|
|
112 |
results = []
|
113 |
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
|
114 |
patient_texts = row['Patient']
|
|
|
24 |
---
|
25 |
# Model Card for G-E5-rman-Emotions
|
26 |
|
27 |
+
This is basically the German translation of arpanghoshal/EmoRoBERTa. We used the go_emotions dataset, translated it into German and fine-tuned the FacebookAI/xlm-roberta-base model. So this model allows the classification of **28 emotions** in German Transcripts (**'admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'**). A paper will be published soonish...
|
28 |
|
29 |
|
30 |
## Model Details
|
|
|
67 |
model_path = os.path.join(base_path, 'Modell')
|
68 |
file_path = os.path.join(base_path, 'Datensatz')
|
69 |
|
70 |
+
MODEL = "FacebookAI/xlm-roberta-base"
|
71 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, do_lower_case=False)
|
72 |
model = AutoModelForSequenceClassification.from_pretrained(
|
73 |
model_path,
|
|
|
108 |
start_time = time.time()
|
109 |
df = df_full
|
110 |
|
111 |
+
# Save results in a dict, here the df contains the additional variables File, Class, session, short_id, long_id, Prediction, hscl-11, and srs.
|
112 |
+
# However, only the "Sentence" column with the text is relevant for the pipeline.
|
113 |
results = []
|
114 |
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
|
115 |
patient_texts = row['Patient']
|