File size: 8,167 Bytes
2df812d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
'''
Author: Chris Xiao yl.xiao@mail.utoronto.ca
Date: 2023-09-11 18:27:02
LastEditors: Chris Xiao yl.xiao@mail.utoronto.ca
LastEditTime: 2023-12-17 18:22:47
FilePath: /EndoSAM/endoSAM/train.py
Description: fine-tune training script
I Love IU
Copyright (c) 2023 by Chris Xiao yl.xiao@mail.utoronto.ca, All Rights Reserved. 
'''
'''
@copyright Chris Xiao yl.xiao@mail.utoronto.ca
'''
import argparse
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
import os
from dataset import EndoVisDataset
from utils import make_if_dont_exist, setup_logger, one_hot_embedding_3d, save_checkpoint, plot_progress
import datetime
import torch
from model import EndoSAMAdapter
import numpy as np
from segment_anything.build_sam import sam_model_registry
from loss import ce_loss, mse_loss
from tqdm import tqdm
import wget

COMMON_MODEL_LINKS={
    'default': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth',
    'vit_h': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth',
    'vit_l': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth',
    'vit_b': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth'
}

def parse_command():
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', default=None, type=str, help='path to config file')
    parser.add_argument('--resume', action='store_true', help='use this if you want to continue a training')
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = parse_command()
    cfg_path = args.cfg
    resume = args.resume
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    if cfg_path is not None:
        if os.path.exists(cfg_path):
            cfg = OmegaConf.load(cfg_path)
        else:
            raise FileNotFoundError(f'config file {cfg_path} not found')
    else:
        raise ValueError('config file not specified')

    
    if 'sam_model_dir' not in OmegaConf.to_container(cfg)['model'].keys() or OmegaConf.is_missing(cfg.model, 'sam_model_dir') or not os.path.exists(cfg.model.sam_model_dir):
        print("Didn't find SAM Checkpoint. Downloading from Facebook AI...")
        parent_dir = '/'.join(os.getcwd().split('/')[:-1])
        model_dir = os.path.join(parent_dir, 'sam_ckpts')
        make_if_dont_exist(model_dir, overwrite=True)
        checkpoint = os.path.join(model_dir, cfg.model.sam_model_type+'.pth')
        wget.download(COMMON_MODEL_LINKS[cfg.model.sam_model_type], checkpoint)
        OmegaConf.update(cfg, 'model.sam_model_dir', checkpoint)
        OmegaConf.save(cfg, cfg_path)
        
    exp = cfg.experiment_name
    root_dir = cfg.dataset.dataset_dir
    img_format = cfg.dataset.img_format
    ann_format = cfg.dataset.ann_format
    model_path = cfg.model_folder
    log_path = cfg.log_folder
    ckpt_path = cfg.ckpt_folder
    plot_path = cfg.plot_folder
    model_exp_path = os.path.join(model_path, exp)
    log_exp_path = os.path.join(log_path, exp)
    ckpt_exp_path = os.path.join(ckpt_path, exp)
    plot_exp_path = os.path.join(plot_path, exp)
    
    if not resume:
        make_if_dont_exist(model_path, overwrite=True)
        make_if_dont_exist(log_path, overwrite=True)
        make_if_dont_exist(ckpt_path, overwrite=True)
        make_if_dont_exist(plot_path, overwrite=True)
        make_if_dont_exist(model_exp_path, overwrite=True)
        make_if_dont_exist(log_exp_path, overwrite=True)
        make_if_dont_exist(ckpt_exp_path, overwrite=True)
        make_if_dont_exist(plot_exp_path, overwrite=True)
    
    datetime_object = 'training_log_' + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S") + '.log'
    logger = setup_logger(f'EndoSAM', os.path.join(log_exp_path, datetime_object))
    logger.info(f"Welcome To {exp} Fine-Tuning")
    
    logger.info("Load Dataset-Specific Parameters")
    train_dataset = EndoVisDataset(root_dir, ann_format=ann_format, img_format=img_format, mode='train', encoder_size=cfg.model.encoder_size)
    valid_dataset = EndoVisDataset(root_dir, ann_format=ann_format, img_format=img_format, mode='val', encoder_size=cfg.model.encoder_size)
    train_loader = DataLoader(train_dataset, batch_size=cfg.train_bs, shuffle=True, num_workers=cfg.num_workers)
    valid_loader = DataLoader(valid_dataset, batch_size=cfg.val_bs, shuffle=True, num_workers=cfg.num_workers)

    logger.info("Load Model-Specific Parameters")
    sam_mask_encoder, sam_prompt_encoder, sam_mask_decoder = sam_model_registry[cfg.model.sam_model_type](checkpoint=cfg.model.sam_model_dir,customized=cfg.model.sam_model_customized)
    model = EndoSAMAdapter(device, cfg.model.class_num, sam_mask_encoder, sam_prompt_encoder, sam_mask_decoder, num_token=cfg.num_token).to(device)
    lr = cfg.opt_params.lr_default
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    train_losses = []
    val_losses = []
    best_val_loss = np.inf
    max_iter = cfg.max_iter
    val_iter = cfg.val_iter
    start_epoch = 0
    if resume:
        ckpt = torch.load(os.path.join(ckpt_exp_path, 'ckpt.pth'), map_location=device)
        optimizer.load_state_dict(ckpt['optimizer'])
        model.load_state_dict(ckpt['weights'])
        best_val_loss = ckpt['best_val_loss']
        train_losses = ckpt['train_losses']
        val_losses = ckpt['val_losses']
        lr = optimizer.param_groups[0]['lr']
        start_epoch = ckpt['epoch'] + 1
        logger.info("Resume Training")
    else:
        logger.info("Start Training")
    
    for epoch in range(start_epoch, cfg.max_iter):
        logger.info(f"Epoch {epoch+1}/{cfg.max_iter}:")
        losses = []
        model.train()
        with tqdm(train_loader, unit='batch', desc='Training') as tdata:
            for img, ann, _, _ in tdata:
                img = img.to(device)
                ann = ann.to(device).unsqueeze(1).long()
                ann = one_hot_embedding_3d(ann, class_num=cfg.model.class_num)
                optimizer.zero_grad()
                pred, pred_quality = model(img)
                loss = cfg.losses.ce.weight * ce_loss(ann, pred) + cfg.losses.mse.weight * mse_loss(ann, pred)
                tdata.set_postfix(loss=loss.item())
                loss.backward()
                optimizer.step()
                losses.append(loss.item())

        avg_loss = np.mean(losses, axis=0)
        logger.info(f"\ttraining loss: {avg_loss}")
        train_losses.append([epoch+1, avg_loss])
        
        if epoch % cfg.val_iter == 0:
            model.eval()
            losses = []
            with torch.no_grad():
                with tqdm(valid_loader, unit='batch', desc='Validation') as tdata:
                    for img, ann, _, _ in tdata:
                        img = img.to(device)
                        ann = ann.to(device).unsqueeze(1).long()
                        ann = one_hot_embedding_3d(ann, class_num=cfg.model.class_num)
                        pred, pred_quality = model(img)
                        loss = cfg.losses.ce.weight * ce_loss(ann, pred) + cfg.losses.mse.weight * mse_loss(ann, pred)
                        tdata.set_postfix(loss=loss.item())
                        losses.append(loss.item())
            
            avg_loss = np.mean(losses, axis=0)
            logger.info(f"\tvalidation loss: {avg_loss}")
            val_losses.append([epoch+1, avg_loss])
            if avg_loss < best_val_loss:
                best_val_loss = avg_loss
                logger.info(f"\tsave best endosam model")
                torch.save({
                    'epoch': epoch,
                    'best_val_loss': best_val_loss,
                    'train_losses': train_losses,
                    'val_losses': val_losses,
                    'endosam_state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                }, os.path.join(model_exp_path, 'model.pth'))
        save_dir = os.path.join(ckpt_exp_path, 'ckpt.pth')
        save_checkpoint(model, optimizer, epoch, best_val_loss, train_losses, val_losses, save_dir)
        plot_progress(logger, plot_exp_path, train_losses, val_losses, 'loss')